TensorBoard: Visualizing Learning

(TensorBoard : 학습 시각화)

기계학습이 어떻게 하는지 시각적으로 볼 수 있는 라이브러리입니다.

거대한 심 신경 네트워크를 훈련하는 것처럼 TensorFlow를 사용할 계산은 복잡하고 혼란 스러울 수 있습니다. TensorFlow 프로그램을 더 쉽게 이해하고 디버깅하고 최적화하기 위해 TensorBoard라는 시각화 도구 모음을 포함 시켰습니다. TensorBoard를 사용하여 TensorFlow 그래프를 시각화하고 그래프 실행에 대한 정량적 메트릭을 플롯하고 통과 한 이미지와 같은 추가 데이터를 표시 할 수 있습니다. TensorBoard가 완전히 구성되면 다음과 같이 표시됩니다.

MNIST TensorBoard

이 자습서는 간단한 TensorBoard 사용법을 배우기위한 것입니다. 다른 리소스도 있습니다. TensorBoard의 GitHub(TensorBoard's GitHub)에는 팁 및 트릭 및 디버깅 정보를
포함하여 TensorBoard 사용에 대한 더 많은 정보가 있습니다.

Serializing the data

데이터 직렬화


TensorBoard는 TensorFlow를 실행할 때 생성 할 수있는 요약 데이터가 포함 된 TensorFlow 이벤트 파일을 읽음으로써 작동합니다. 다음은 TensorBoard 내의 요약 데이터에 대한 일반적인 수명주기입니다.


먼저 요약 데이터를 수집 할 TensorFlow 그래프를 만들고 요약 작업으로 주석(summary operations)을 추가 할 노드를 결정합니다.

예를 들어, MNIST 자리를 인식 할 수있는 길쌈 신경 네트워크를 학습한다고 가정합니다. 학습 속도가 시간에 따라 어떻게 변하는 지, 그리고 목적 함수가 어떻게 변하는지를 기록하고 싶습니다. 학습 속도와 손실을 각각 출력하는 노드에 tf.summary.scalar op를 연결하여이를 수집합니다. 그런 다음 각 스칼라 요약에 '학습률'또는 '손실 함수'와 같은 의미있는 태그를 지정합니다.


특정 레이어에서 나오는 활성화 분포 또는 그라데이션이나 가중치의 분포를 시각화하고 싶을 수도 있습니다. tf.summary.histogram ops를 그라디언트 출력과 가중치를 유지하는 변수에 각각 첨부하여이 데이터를 수집합니다.


사용 가능한 모든 요약 작업에 대한 자세한 내용은 요약 작업에 대한 문서를 확인하십시오.

TensorFlow의 작업은 실행하기 전까지는 아무 것도하지 않거나 출력에 의존하는 연산을 수행합니다. 방금 작성한 요약 노드는 그래프의 주변 장치입니다. 현재 실행중인 작업 단위는 모두 해당 노드에 의존하지 않습니다. 따라서 요약을 생성하려면 이러한 모든 요약 노드를 실행해야합니다. 손으로 직접 관리하는 것은 지루할 수 있으므로 tf.summary.merge_all을 사용하여 모든 요약 데이터를 생성하는 단일 op로 결합하십시오.


그런 다음 병합 된 요약 연산을 실행하면 주어진 단계에서 모든 요약 데이터가있는 직렬화 된 요약 protobuf 객체가 생성됩니다. 마지막으로이 요약 데이터를 디스크에 기록하려면 summary protobuf를 tf.summary.FileWriter에 전달하십시오.


FileWriter는 생성자에서 logdir을 사용합니다.이 logdir은 모든 이벤트가 기록되는 디렉토리입니다. 또한 FileWriter는 선택적으로 생성자에서 Graph를 가져올 수 있습니다. Graph 객체를 받으면 TensorBoard는 텐서 모양 정보와 함께 그래프를 시각화합니다. 이렇게하면 그래프를 통해 흐르는 것이 훨씬 잘 전달됩니다 : Tensor 모양 정보( Tensor shape information)를 참조하십시오.

이제 그래프를 수정하고 FileWriter를 만들었으므로 네트워크를 시작할 준비가되었습니다! 원하는 경우 매 단계마다 병합 된 요약 작업을 실행하고 많은 양의 교육 데이터를 기록 할 수 있습니다. 그것은 당신이 필요로하는 것보다 더 많은 데이터 일 것 같다. 대신 병합 된 요약 연산을 n 단계마다 실행하는 것을 고려하십시오.


아래의 코드 예제는 간단한 MNIST 튜토리얼을 수정 한 것으로서 몇 가지 요약 작업을 추가하고 10 단계마다 실행합니다. 이것을 실행하고 tensorboard --logdir = / tmp / tensorflow / mnist를 실행하면 훈련 도중 가중치 나 정확도가 어떻게 변화했는지와 같은 통계를 시각화 할 수 있습니다. 아래의 코드는 발췌 한 것입니다. 전체 소스가 여기(here)에 있습니다.

def variable_summaries(var):
 
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
 
with tf.name_scope('summaries'):
    mean
= tf.reduce_mean(var)
    tf
.summary.scalar('mean', mean)
   
with tf.name_scope('stddev'):
      stddev
= tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf
.summary.scalar('stddev', stddev)
    tf
.summary.scalar('max', tf.reduce_max(var))
    tf
.summary.scalar('min', tf.reduce_min(var))
    tf
.summary.histogram('histogram', var)

def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
 
"""Reusable code for making a simple neural net layer.

  It does a matrix multiply, bias add, and then uses relu to nonlinearize.
  It also sets up name scoping so that the resultant graph is easy to read,
  and adds a number of summary ops.
  """

 
# Adding a name scope ensures logical grouping of the layers in the graph.
 
with tf.name_scope(layer_name):
   
# This Variable will hold the state of the weights for the layer
   
with tf.name_scope('weights'):
      weights
= weight_variable([input_dim, output_dim])
      variable_summaries
(weights)
   
with tf.name_scope('biases'):
      biases
= bias_variable([output_dim])
      variable_summaries
(biases)
   
with tf.name_scope('Wx_plus_b'):
      preactivate
= tf.matmul(input_tensor, weights) + biases
      tf
.summary.histogram('pre_activations', preactivate)
    activations
= act(preactivate, name='activation')
    tf
.summary.histogram('activations', activations)
   
return activations

hidden1
= nn_layer(x, 784, 500, 'layer1')

with tf.name_scope('dropout'):
  keep_prob
= tf.placeholder(tf.float32)
  tf
.summary.scalar('dropout_keep_probability', keep_prob)
  dropped
= tf.nn.dropout(hidden1, keep_prob)

# Do not apply softmax activation yet, see below.
y
= nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

with tf.name_scope('cross_entropy'):
 
# The raw formulation of cross-entropy,
 
#
 
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
 
#                               reduction_indices=[1]))
 
#
 
# can be numerically unstable.
 
#
 
# So here we use tf.nn.softmax_cross_entropy_with_logits on the
 
# raw outputs of the nn_layer above, and then average across
 
# the batch.
  diff
= tf.nn.softmax_cross_entropy_with_logits(targets=y_, logits=y)
 
with tf.name_scope('total'):
    cross_entropy
= tf.reduce_mean(diff)
tf
.summary.scalar('cross_entropy', cross_entropy)

with tf.name_scope('train'):
  train_step
= tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
      cross_entropy
)

with tf.name_scope('accuracy'):
 
with tf.name_scope('correct_prediction'):
    correct_prediction
= tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
 
with tf.name_scope('accuracy'):
    accuracy
= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf
.summary.scalar('accuracy', accuracy)

# Merge all the summaries and write them out to /tmp/mnist_logs (by default)
merged
= tf.summary.merge_all()
train_writer
= tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                      sess
.graph)
test_writer
= tf.summary.FileWriter(FLAGS.summaries_dir + '/test')
tf
.global_variables_initializer().run()

FileWriter를 초기화 한 후에는 모델을 테스트하고 테스트 할 때 FileWriter에 요약을 추가해야합니다.

# Train the model, and also write summaries.
# Every 10th step, measure test-set accuracy, and write test summaries
# All other steps, run train_step on training data, & add training summaries

def feed_dict(train):
 
"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
 
if train or FLAGS.fake_data:
    xs
, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
    k
= FLAGS.dropout
 
else:
    xs
, ys = mnist.test.images, mnist.test.labels
    k
= 1.0
 
return {x: xs, y_: ys, keep_prob: k}

for i in range(FLAGS.max_steps):
 
if i % 10 == 0:  # Record summaries and test-set accuracy
    summary
, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
    test_writer
.add_summary(summary, i)
   
print('Accuracy at step %s: %s' % (i, acc))
 
else:  # Record train set summaries, and train
    summary
, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
    train_writer
.add_summary(summary, i)

이제 TensorBoard를 사용하여이 데이터를 시각화 할 수 있습니다.


Launching TensorBoard

TensorBoard 출시

TensorBoard를 실행하려면 다음 명령을 사용하십시오 (또는 python -m tensorboard.main).

tensorboard --logdir=path/to/log-directory

여기서 logdir은 FileWriter가 데이터를 직렬화 한 디렉토리를 가리 킵니다. 이 logdir 디렉토리에 별도의 실행에서 직렬화 된 데이터가 들어있는 하위 디렉토리가 있으면 TensorBoard는 이러한 모든 실행에서 데이터를 시각화합니다. TensorBoard가 실행되면 웹 브라우저에서 localhost : 6006으로 이동하여 TensorBoard를 봅니다.


TensorBoard를 보면 오른쪽 상단 모서리에 탐색 탭이 표시됩니다. 각 탭은 시각화 할 수있는 직렬화 된 데이터 집합을 나타냅니다.


그래프 탭을 사용하여 그래프를 시각화하는 방법에 대한 자세한 내용은 TensorBoard : 그래프 시각화를 참조하십시오.


TensorBoard에 대한 자세한 사용 정보는 TensorBoard의 GitHub(TensorBoard's GitHub)를 참조하십시오.




TensorFlow Mechanics 101

Code: tensorflow/examples/tutorials/mnist/


본 자습서의 목적은 TensorFlow를 사용하여(고전적인)MNIST데이터 세트를 사용하여 손으로 작성된 손가락을 사용하여 간단한 피드 포워드 신경 네트워크를 훈련하고 평가하는 방법입니다. 본 자습서의 대상은 TensorFlow를 사용하는 데 관심이 있는 숙련된 사용자를 위한 것입니다.

이러한 자습서는 일반적으로 기계 학습을 가르치기 위한 것이 아닙니다.

TensorFlow를 설치하기 위한 지침을 준수했는지 확인하십시오.


튜토리얼 파일

이 자습서는 다음 파일을 참조합니다.

파일 목적

mnist.py : 완전히 연결된 MNIST 모델을 빌드하는 코드.

fully_connected_feed.py : 피드 사전을 사용하여 다운로드 된 데이터 세트에 대해 빌드 된 MNIST 모델을 학습하는 기본 코드.

교육을 시작하려면 직접 fully_connected_feed.py 파일을 실행하기 만하면됩니다.

python fully_connected_feed.py

데이터 준비

MNIST는 기계 학습의 전형적인 문제입니다. 문제는 회색으로 된 숫자 280x28픽셀 이미지를 보고이미지가 0에서 9까지의 숫자에 대해 나타내는 숫자를 판별하는 것입니다.

MNIST Digits

자세한 내용은 YanLecun의 MNIST페이지 또는 NBIST의 시각화를 참조하십시오.

(Yann LeCun's MNIST page or Chris Olah's visualizations of MNIST.)

다운로드.

런타임_데이터 처리()방법의 맨 위에 있는 경우 Input_data.reads_data_sets()함수가 로컬 교육 폴더로 다운로드된 데이터를 다운로드하여 DataSet인스턴스를 반환합니다.

data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

참고 : fake_data 플래그는 단위 테스트 목적으로 사용되며 판독기에서 무시할 수 있습니다.


데이터 집합             목적

data_sets.train                 55000 이미지 및 레이블, 기본 교육용.

data_sets.validation          5000 개의 이미지 및 레이블, 교육 정확도의 반복 검증.

data_sets.test                 훈련 된 정확도의 최종 테스트를 위해 10000 개의 이미지 및 레이블.


입력 및 자리 표시 자

placeholder_inputs () 함수는 입력의 모양을 정의하는 두 개의 tf.placeholder 연산을 생성합니다.이 연산은 batch_size를 포함하여 나머지 그래프와 실제 훈련 예제가 입력됩니다.

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
                                                       mnist
.IMAGE_PIXELS))
labels_placeholder
= tf.placeholder(tf.int32, shape=(batch_size))

또한 트레이닝 루프에서 전체 이미지 및 레이블 데이터 세트가 각 단계의 batch_size에 맞게 슬라이스되고 이러한 자리 표시 자 연산과 일치 한 다음 feed_dict 매개 변수를 사용하여 sess.run () 함수로 전달됩니다.


그래프 작성

데이터의 자리 표시자를 만든 후 그래프는 3 단계 패턴 인 추론 (), 손실 () 및 학습 ()에 따라 mnist.py 파일에서 작성됩니다.

inference () - 예측을하기 위해 네트워크를 앞으로 돌리는 데 필요한만큼 그래프를 만듭니다.

loss () - 손실을 생성하는 데 필요한 연산을 추론 그래프에 추가합니다.

training () - 그라디언트를 계산하고 적용하는 데 필요한 연산을 손실 그래프에 추가합니다.


추론

inference () 함수는 출력 예측을 포함하는 텐서를 반환하는 데 필요한만큼 그래프를 작성합니다.

이미지 자리 표시자를 입력으로 사용하고 ReLU 활성화가있는 완전히 연결된 레이어와 출력 로짓을 지정하는 10 개의 노드 선형 레이어가 그 위에 빌드됩니다.

각 계층은 해당 범위 내에서 작성된 항목의 접두사로 사용되는 고유 한 tf.name_scope 아래에 작성됩니다.

with tf.name_scope('hidden1'):

정의 된 범위 내에서 각 레이어에서 사용되는 가중치와 바이어스는 원하는 모양으로 tf.Variable 인스턴스에 생성됩니다.

weights = tf.Variable(
    tf
.truncated_normal([IMAGE_PIXELS, hidden1_units],
                        stddev
=1.0 / math.sqrt(float(IMAGE_PIXELS))),
    name
='weights')
biases
= tf.Variable(tf.zeros([hidden1_units]),
                     name
='biases')

예를 들어, hidden1 범위에서 생성 된 경우 weights 변수에 고유 한 이름이 "hidden1 / weights"가됩니다.

각 변수에는 초기화 작업이 주어진다.

이 가장 일반적인 경우, 가중치는 tf.truncated_normal로 초기화되고 2 차원 텐서의 모양이 주어지면 가중치가 연결되는 레이어의 단위 수를 나타내는 첫 번째 흐림과 수를 나타내는 두 번째 흐림이 표시됩니다 가중치가 연결되는 계층의 단위. hidden1이라는 첫 번째 레이어의 경우, 가중치가 이미지 입력을 hidden1 레이어에 연결하기 때문에 크기는 [IMAGE_PIXELS, hidden1_units]입니다. tf.truncated_normal 초기화 프로그램은 주어진 평균 및 표준 편차로 임의의 분포를 생성합니다.

그런 다음 바이어스를 tf.zeros로 초기화하여 모든 0 값으로 시작하도록하고 그 모양은 연결되는 레이어의 단위 수입니다.

그래프의 세 가지 주요 작업 - 숨겨진 레이어에 대해 tf.matmul 및 로그에 대해 하나의 추가 tf.matmul을 포함하는 두 개의 tf.nn.relu ops가 차례로 생성되고 각 인스턴스에는 각각 별도의 tf.Variable 인스턴스가 생성됩니다 입력 자리 표시 자의 이전 텐서 또는 이전 레이어의 출력 텐서.

hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
logits = tf.matmul(hidden2, weights) + biases

마지막으로 출력을 포함하는 로그 텐서가 반환됩니다.


손실

loss () 함수는 필요한 손실 작업을 추가하여 그래프를 작성합니다.

먼저 labels_placeholder의 값이 64 비트 정수로 변환됩니다. 그런 다음 tf.nn.sparse_softmax_cross_entropy_with_logits op가 추가되어 labels_placeholder에서 1- 핫 레이블을 자동으로 생성하고 inference () 함수의 출력 로그를 1- 핫 레이블과 비교합니다.

labels = tf.to_int64(labels)
cross_entropy
= tf.nn.sparse_softmax_cross_entropy_with_logits(
    labels
=labels, logits=logits, name='xentropy')

그런 다음 tf.reduce_mean을 사용하여 일괄 처리 차원 (첫 번째 차원)에서 교차 엔트로피 값을 전체 손실로 평균화합니다.

loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')

그리고 나서 손실 값을 포함 할 텐서가 반환됩니다.

노트 : 교차 엔트로피는 정보 이론의 아이디어로, 실제로 사실 인 것을 감안할 때 신경망의 예측을 얼마나 나쁘게 생각하는지 설명 할 수 있습니다. 자세한 내용은 블로그 게시물 Visual Information Theory (http://colah.github.io/posts/2015-09-Visual-Information/)를 참조하십시오.

훈련

training () 함수는 Gradient Descent를 통해 손실을 최소화하는 데 필요한 연산을 추가합니다.

먼저 loss () 함수에서 손실 텐서를 취하여 tf.summary.FileWriter (아래 참조)와 함께 사용할 때 이벤트 파일에 요약 값을 생성하는 연산 인 tf.summary.scalar로 전달합니다. 이 경우 요약이 기록 될 때마다 손실의 스냅 샷 값을 방출합니다.

tf.summary.scalar('loss', loss)

다음으로, 요청 된 학습 속도로 그라데이션을 적용하는 tf.train.GradientDescentOptimizer를 인스턴스화합니다.

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

그런 다음 글로벌 교육 단계에 대한 카운터를 포함하는 단일 변수를 생성하고 tf.train.Optimizer.minimize op는 시스템의 학습 가능한 가중치를 업데이트하고 전역 단계를 증가시키는 데 사용됩니다. 이 작업은 관습에 따라 train_op이라고하며, 한 단계의 교육 (아래 참조)을 유도하기 위해 TensorFlow 세션에서 실행해야하는 작업입니다.

global_step = tf.Variable(0, name='global_step', trainable=False)
train_op
= optimizer.minimize(loss, global_step=global_step)

모델 교육

일단 그래프가 작성되면 fully_connected_feed.py의 사용자 코드에 의해 제어되는 루프에서 반복적으로 트레이닝되고 평가 될 수 있습니다.

그래프

run_training () 함수의 맨 위에는 내장 된 모든 op가 기본 전역 tf.Graph 인스턴스와 연관되어 있음을 나타내는 명령과 함께 python이 있습니다.

with tf.Graph().as_default():

tf.Graph는 그룹으로 함께 실행될 수있는 작업 모음입니다. 대부분의 TensorFlow 사용은 단일 기본 그래프에만 의존해야합니다.

여러 그래프를 사용하는보다 복잡한 용도는 가능하지만이 간단한 자습서의 범위를 벗어납니다.

세션

모든 빌드 준비가 완료되고 필요한 모든 작업이 생성되면 그래프 실행을위한 세션이 만들어집니다.

sess = tf.Session()

또는 세션을 범위 지정을 위해 with 블록으로 생성 할 수 있습니다.

with tf.Session() as sess:

세션에 대한 빈 매개 변수는이 코드가 기본 로컬 세션에 연결 (또는 아직 생성되지 않은 경우 생성)한다는 것을 나타냅니다.

세션을 생성 한 직후, 모든 tf.Variable 인스턴스는 초기화 op에서 tf.Session.run을 호출하여 초기화됩니다.

init = tf.global_variables_initializer()
sess
.run(init)

tf.Session.run 메서드는 매개 변수로 전달 된 op (s)에 해당하는 그래프의 전체 하위 집합을 실행합니다. 이 첫 번째 호출에서 init op는 변수의 초기화 코드 만 포함하는 tf.group입니다. 나머지 그래프는 여기에서 실행되지 않습니다. 그것은 아래의 교육 과정에서 발생합니다.

학습 루프

세션으로 변수를 초기화 한 후 교육이 시작될 수 있습니다.

사용자 코드는 단계별 교육을 제어하며 유용한 교육을 수행 할 수있는 가장 단순한 루프는 다음과 같습니다.

for step in xrange(FLAGS.max_steps):
    sess
.run(train_op)

그러나이 자습서는 이전 단계에서 생성 된 자리 표시 자와 일치시키기 위해 각 단계의 입력 데이터를 슬라이스해야한다는 점에서 약간 더 복잡합니다.

그래프 피드

각 단계에서 코드는 단계에 대한 교육을위한 예제 세트를 포함하는 피드 사전을 생성하며,이 단계는 해당 인스턴스가 나타내는 자리 표시 자 연산에 의해 입력됩니다.

fill_feed_dict () 함수에서 주어진 DataSet은 이미지와 레이블의 다음 batch_size 세트에 대해 쿼리되고 자리 표시 자와 일치하는 tensors는 다음 이미지와 레이블을 포함하여 채워집니다.

images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
                                               FLAGS
.fake_data)

그런 다음 키와 자리 표시자를 나타내는 파이썬 사전 객체가 생성되고 대표적인 피드 텐서가 값으로 제공됩니다.

feed_dict = {
    images_placeholder
: images_feed,
    labels_placeholder
: labels_feed,
}

이것은 sess.run () 함수의 feed_dict 매개 변수로 전달되어이 단계의 학습에 대한 입력 예제를 제공합니다.

상태 확인

이 코드는 실행 호출에서 가져올 두 값을 지정합니다 : [train_op, loss].

for step in xrange(FLAGS.max_steps):
    feed_dict
= fill_feed_dict(data_sets.train,
                               images_placeholder
,
                               labels_placeholder
)
    _
, loss_value = sess.run([train_op, loss],
                             feed_dict
=feed_dict)

가져올 값은 두 가지이므로 sess.run ()은 두 항목이 포함 된 튜플을 반환합니다. 가져올 값 목록에있는 각 Tensor는 반환 된 튜플의 numpy 배열에 해당하며이 단계에서이 텐서 값이 채워집니다. train_op은 출력 값이없는 Operation이기 때문에 반환 된 튜플의 해당 요소는 None이므로 버려집니다. 그러나 모델이 훈련 중에 분기되면 손실 텐서의 값은 NaN이 될 수 있으므로이 값을 로깅에 사용합니다.

NaN 없이도 교육이 잘 진행된다고 가정하면 교육 과정에서 100 단계마다 간단한 상태 텍스트를 인쇄하여 사용자에게 교육 상태를 알릴 수 있습니다.

if step % 100 == 0:
   
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))

상태 시각화

TensorBoard에서 사용되는 이벤트 파일을 내보내려면 그래프 작성 단계에서 모든 요약 (이 경우 하나만 포함)이 단일 텐서로 수집됩니다.

summary = tf.summary.merge_all()

그리고 나서 세션이 생성 된 후 tf.summary.FileWriter가 인스턴스화되어 그래프 자체와 요약 값을 모두 포함하는 이벤트 파일을 작성할 수 있습니다.

summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

마지막으로, 이벤트 파일은 요약이 평가 될 때마다 새 요약 값으로 업데이트되고 출력이 작성자의 add_summary () 함수에 전달됩니다.

summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer
.add_summary(summary_str, step)

이벤트 파일을 작성하면 Training 폴더에 대해 TensorBoard를 실행하여 요약의 값을 표시 할 수 있습니다.

MNIST TensorBoard

참고 : Tensorboard를 작성하고 실행하는 방법에 대한 자세한 내용은 함께 제공되는 Tensorboard : Visualizing Learning을 참조하십시오. Tensorboard: Visualizing Learning.

검사 점 저장(체크포인트 저장)

추후 교육이나 평가를 위해 모델을 나중에 복원하는 데 사용할 수있는 검사 점 파일을 내보내려면 tf.train.Saver를 인스턴스화합니다.

saver = tf.train.Saver()

트레이닝 루프에서는 tf.train.Saver.save 메소드가 정기적으로 호출되어 모든 트레이닝 가능한 변수의 현재 값을 사용하여 검사 점 파일을 트레이닝 디렉토리에 씁니다.

saver.save(sess, FLAGS.train_dir, global_step=step)

나중에 추후에 thetf.train.Saver.restore 메소드를 사용하여 모델 매개 변수를 다시로드하여 교육을 재개 할 수 있습니다.

saver.restore(sess, FLAGS.train_dir)


모델 평가

천 단계마다이 코드는 교육 및 테스트 데이터 세트 모두에 대해 모델을 평가하려고 시도합니다. do_eval () 함수는 교육, 유효성 검사 및 테스트 데이터 집합에 대해 세 번 호출됩니다.

print('Training Data Eval:')
do_eval
(sess,
        eval_correct
,
        images_placeholder
,
        labels_placeholder
,
        data_sets
.train)
print('Validation Data Eval:')
do_eval
(sess,
        eval_correct
,
        images_placeholder
,
        labels_placeholder
,
        data_sets
.validation)
print('Test Data Eval:')
do_eval
(sess,
        eval_correct
,
        images_placeholder
,
        labels_placeholder
,
        data_sets
.test)

더 복잡한 사용법은 대개 상당한 양의 하이퍼 매개 변수 튜닝 후에 만 ​​확인되도록 data_sets.test를 격리합니다. 그러나 간단한 MNIST 문제 때문에 모든 데이터에 대해 평가합니다.

평가 그래프 작성

교육 루프를 시작하기 전에 평가 () 함수는 mnist.py에서 loss () 함수와 동일한 logits / labels 매개 변수를 사용하여 evaluation () 함수를 호출하여 작성해야합니다.

eval_correct = mnist.evaluation(logits, labels_placeholder)

evaluation () 함수는 단순히 true 레이블이 K 가장 가능성있는 예측에서 발견 될 수있는 경우 각 모델 출력을 자동으로 득점 할 수있는 tf.nn.in_top_k op를 생성합니다. 이 경우 K의 값을 1로 설정하여 실제 레이블 인 경우 올바른 예측 만 고려합니다.

eval_correct = tf.nn.in_top_k(logits, labels, 1)

평가 출력

그런 다음 feed_dict를 채우고 eval_correct op에 대해 sess.run ()을 호출하여 지정된 데이터 집합에서 모델을 평가하는 루프를 만들 수 있습니다.

for step in xrange(steps_per_epoch):
    feed_dict
= fill_feed_dict(data_set,
                               images_placeholder
,
                               labels_placeholder
)
    true_count
+= sess.run(eval_correct, feed_dict=feed_dict)

true_count 변수는 in_top_k op가 올바른 것으로 판단한 모든 예측을 누적합니다. 거기에서 정밀도는 총 사례 수로 단순히 나누어 계산할 수 있습니다.

precision = true_count / num_examples
print('  Num examples: %d  Num correct: %d  Precision @ 1: %0.04f' %
     
(num_examples, true_count, precision))



+ Recent posts