TensorBoard: Visualizing Learning

(TensorBoard : 학습 시각화)

기계학습이 어떻게 하는지 시각적으로 볼 수 있는 라이브러리입니다.

거대한 심 신경 네트워크를 훈련하는 것처럼 TensorFlow를 사용할 계산은 복잡하고 혼란 스러울 수 있습니다. TensorFlow 프로그램을 더 쉽게 이해하고 디버깅하고 최적화하기 위해 TensorBoard라는 시각화 도구 모음을 포함 시켰습니다. TensorBoard를 사용하여 TensorFlow 그래프를 시각화하고 그래프 실행에 대한 정량적 메트릭을 플롯하고 통과 한 이미지와 같은 추가 데이터를 표시 할 수 있습니다. TensorBoard가 완전히 구성되면 다음과 같이 표시됩니다.

MNIST TensorBoard

이 자습서는 간단한 TensorBoard 사용법을 배우기위한 것입니다. 다른 리소스도 있습니다. TensorBoard의 GitHub(TensorBoard's GitHub)에는 팁 및 트릭 및 디버깅 정보를
포함하여 TensorBoard 사용에 대한 더 많은 정보가 있습니다.

Serializing the data

데이터 직렬화


TensorBoard는 TensorFlow를 실행할 때 생성 할 수있는 요약 데이터가 포함 된 TensorFlow 이벤트 파일을 읽음으로써 작동합니다. 다음은 TensorBoard 내의 요약 데이터에 대한 일반적인 수명주기입니다.


먼저 요약 데이터를 수집 할 TensorFlow 그래프를 만들고 요약 작업으로 주석(summary operations)을 추가 할 노드를 결정합니다.

예를 들어, MNIST 자리를 인식 할 수있는 길쌈 신경 네트워크를 학습한다고 가정합니다. 학습 속도가 시간에 따라 어떻게 변하는 지, 그리고 목적 함수가 어떻게 변하는지를 기록하고 싶습니다. 학습 속도와 손실을 각각 출력하는 노드에 tf.summary.scalar op를 연결하여이를 수집합니다. 그런 다음 각 스칼라 요약에 '학습률'또는 '손실 함수'와 같은 의미있는 태그를 지정합니다.


특정 레이어에서 나오는 활성화 분포 또는 그라데이션이나 가중치의 분포를 시각화하고 싶을 수도 있습니다. tf.summary.histogram ops를 그라디언트 출력과 가중치를 유지하는 변수에 각각 첨부하여이 데이터를 수집합니다.


사용 가능한 모든 요약 작업에 대한 자세한 내용은 요약 작업에 대한 문서를 확인하십시오.

TensorFlow의 작업은 실행하기 전까지는 아무 것도하지 않거나 출력에 의존하는 연산을 수행합니다. 방금 작성한 요약 노드는 그래프의 주변 장치입니다. 현재 실행중인 작업 단위는 모두 해당 노드에 의존하지 않습니다. 따라서 요약을 생성하려면 이러한 모든 요약 노드를 실행해야합니다. 손으로 직접 관리하는 것은 지루할 수 있으므로 tf.summary.merge_all을 사용하여 모든 요약 데이터를 생성하는 단일 op로 결합하십시오.


그런 다음 병합 된 요약 연산을 실행하면 주어진 단계에서 모든 요약 데이터가있는 직렬화 된 요약 protobuf 객체가 생성됩니다. 마지막으로이 요약 데이터를 디스크에 기록하려면 summary protobuf를 tf.summary.FileWriter에 전달하십시오.


FileWriter는 생성자에서 logdir을 사용합니다.이 logdir은 모든 이벤트가 기록되는 디렉토리입니다. 또한 FileWriter는 선택적으로 생성자에서 Graph를 가져올 수 있습니다. Graph 객체를 받으면 TensorBoard는 텐서 모양 정보와 함께 그래프를 시각화합니다. 이렇게하면 그래프를 통해 흐르는 것이 훨씬 잘 전달됩니다 : Tensor 모양 정보( Tensor shape information)를 참조하십시오.

이제 그래프를 수정하고 FileWriter를 만들었으므로 네트워크를 시작할 준비가되었습니다! 원하는 경우 매 단계마다 병합 된 요약 작업을 실행하고 많은 양의 교육 데이터를 기록 할 수 있습니다. 그것은 당신이 필요로하는 것보다 더 많은 데이터 일 것 같다. 대신 병합 된 요약 연산을 n 단계마다 실행하는 것을 고려하십시오.


아래의 코드 예제는 간단한 MNIST 튜토리얼을 수정 한 것으로서 몇 가지 요약 작업을 추가하고 10 단계마다 실행합니다. 이것을 실행하고 tensorboard --logdir = / tmp / tensorflow / mnist를 실행하면 훈련 도중 가중치 나 정확도가 어떻게 변화했는지와 같은 통계를 시각화 할 수 있습니다. 아래의 코드는 발췌 한 것입니다. 전체 소스가 여기(here)에 있습니다.

def variable_summaries(var):
 
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
 
with tf.name_scope('summaries'):
    mean
= tf.reduce_mean(var)
    tf
.summary.scalar('mean', mean)
   
with tf.name_scope('stddev'):
      stddev
= tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf
.summary.scalar('stddev', stddev)
    tf
.summary.scalar('max', tf.reduce_max(var))
    tf
.summary.scalar('min', tf.reduce_min(var))
    tf
.summary.histogram('histogram', var)

def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
 
"""Reusable code for making a simple neural net layer.

  It does a matrix multiply, bias add, and then uses relu to nonlinearize.
  It also sets up name scoping so that the resultant graph is easy to read,
  and adds a number of summary ops.
  """

 
# Adding a name scope ensures logical grouping of the layers in the graph.
 
with tf.name_scope(layer_name):
   
# This Variable will hold the state of the weights for the layer
   
with tf.name_scope('weights'):
      weights
= weight_variable([input_dim, output_dim])
      variable_summaries
(weights)
   
with tf.name_scope('biases'):
      biases
= bias_variable([output_dim])
      variable_summaries
(biases)
   
with tf.name_scope('Wx_plus_b'):
      preactivate
= tf.matmul(input_tensor, weights) + biases
      tf
.summary.histogram('pre_activations', preactivate)
    activations
= act(preactivate, name='activation')
    tf
.summary.histogram('activations', activations)
   
return activations

hidden1
= nn_layer(x, 784, 500, 'layer1')

with tf.name_scope('dropout'):
  keep_prob
= tf.placeholder(tf.float32)
  tf
.summary.scalar('dropout_keep_probability', keep_prob)
  dropped
= tf.nn.dropout(hidden1, keep_prob)

# Do not apply softmax activation yet, see below.
y
= nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

with tf.name_scope('cross_entropy'):
 
# The raw formulation of cross-entropy,
 
#
 
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
 
#                               reduction_indices=[1]))
 
#
 
# can be numerically unstable.
 
#
 
# So here we use tf.nn.softmax_cross_entropy_with_logits on the
 
# raw outputs of the nn_layer above, and then average across
 
# the batch.
  diff
= tf.nn.softmax_cross_entropy_with_logits(targets=y_, logits=y)
 
with tf.name_scope('total'):
    cross_entropy
= tf.reduce_mean(diff)
tf
.summary.scalar('cross_entropy', cross_entropy)

with tf.name_scope('train'):
  train_step
= tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
      cross_entropy
)

with tf.name_scope('accuracy'):
 
with tf.name_scope('correct_prediction'):
    correct_prediction
= tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
 
with tf.name_scope('accuracy'):
    accuracy
= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf
.summary.scalar('accuracy', accuracy)

# Merge all the summaries and write them out to /tmp/mnist_logs (by default)
merged
= tf.summary.merge_all()
train_writer
= tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                      sess
.graph)
test_writer
= tf.summary.FileWriter(FLAGS.summaries_dir + '/test')
tf
.global_variables_initializer().run()

FileWriter를 초기화 한 후에는 모델을 테스트하고 테스트 할 때 FileWriter에 요약을 추가해야합니다.

# Train the model, and also write summaries.
# Every 10th step, measure test-set accuracy, and write test summaries
# All other steps, run train_step on training data, & add training summaries

def feed_dict(train):
 
"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
 
if train or FLAGS.fake_data:
    xs
, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
    k
= FLAGS.dropout
 
else:
    xs
, ys = mnist.test.images, mnist.test.labels
    k
= 1.0
 
return {x: xs, y_: ys, keep_prob: k}

for i in range(FLAGS.max_steps):
 
if i % 10 == 0:  # Record summaries and test-set accuracy
    summary
, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
    test_writer
.add_summary(summary, i)
   
print('Accuracy at step %s: %s' % (i, acc))
 
else:  # Record train set summaries, and train
    summary
, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
    train_writer
.add_summary(summary, i)

이제 TensorBoard를 사용하여이 데이터를 시각화 할 수 있습니다.


Launching TensorBoard

TensorBoard 출시

TensorBoard를 실행하려면 다음 명령을 사용하십시오 (또는 python -m tensorboard.main).

tensorboard --logdir=path/to/log-directory

여기서 logdir은 FileWriter가 데이터를 직렬화 한 디렉토리를 가리 킵니다. 이 logdir 디렉토리에 별도의 실행에서 직렬화 된 데이터가 들어있는 하위 디렉토리가 있으면 TensorBoard는 이러한 모든 실행에서 데이터를 시각화합니다. TensorBoard가 실행되면 웹 브라우저에서 localhost : 6006으로 이동하여 TensorBoard를 봅니다.


TensorBoard를 보면 오른쪽 상단 모서리에 탐색 탭이 표시됩니다. 각 탭은 시각화 할 수있는 직렬화 된 데이터 집합을 나타냅니다.


그래프 탭을 사용하여 그래프를 시각화하는 방법에 대한 자세한 내용은 TensorBoard : 그래프 시각화를 참조하십시오.


TensorBoard에 대한 자세한 사용 정보는 TensorBoard의 GitHub(TensorBoard's GitHub)를 참조하십시오.




Building Input Functions with tf.estimator

이 튜토리얼에서는 tf.estimator에서 입력 함수를 만드는 방법을 소개합니다. input_fn을 사전 처리하고 모델에 데이터를 입력하는 방법을 개략적으로 살펴 보겠습니다. 그런 다음 median house 값을 예측하기 위해 신경망 회귀 분석기에 교육, 평가 및 예측 데이터를 제공하는 input_fn을 구현합니다.


input_fn이있는 사용자 입력 파이프 라인 input_fn은 피쳐 및 타겟 데이터를 트레인에 전달하고 평가자의 방법을 예측 및 예측하는 데 사용됩니다. 사용자는 input_fn 내부에서 기능 엔지니어링 또는 사전 처리를 수행 할 수 있습니다. 다음은 tf.estimator 빠른 시작 자습서에서 가져온 예제입니다.
import numpy as np

training_set
= tf.contrib.learn.datasets.base.load_csv_with_header(
    filename
=IRIS_TRAINING, target_dtype=np.int, features_dtype=np.float32)

train_input_fn
= tf.estimator.inputs.numpy_input_fn(
    x
={"x": np.array(training_set.data)},
    y
=np.array(training_set.target),
    num_epochs
=None,
    shuffle
=True)

classifier
.train(input_fn=train_input_fn, steps=2000)


input_fn의 해부 다음 코드는 입력 함수의 기본 골격을 보여줍니다.

def my_input_fn():

   
# Preprocess your data here...

   
# ...then return 1) a mapping of feature columns to Tensors with
   
# the corresponding feature data, and 2) a Tensor containing labels
   
return feature_cols, labels

입력 함수의 본문에는 잘못된 예제를 스크러빙하거나 피쳐 스케일링과 같이 입력 데이터를 사전 처리하는 특정 논리가 포함되어 있습니다.


입력 함수는 위의 코드 스켈레톤에서와 같이 모델에 공급할 최종 피처 및 레이블 데이터가 포함 된 다음 두 값을 반환해야합니다.


feature_cols

피쳐 열 이름을 해당 피처 데이터가 들어있는 Tensors (또는 SparseTensors)에 매핑하는 키 / 값 쌍을 포함하는 사전입니다.

labels

라벨 (목표) 값을 포함하는 Tensor : 모델이 예측하고자하는 값.

피쳐 데이터를 텐서 (tensors)로 변환


feature / label 데이터가 python 배열이거나 pandas 데이터 프레임 또는 numpy 배열에 저장되어있는 경우 다음 메소드를 사용하여 input_fn을 생성 할 수 있습니다.

import numpy as np
# numpy input_fn.
my_input_fn
= tf.estimator.inputs.numpy_input_fn(
    x
={"x": np.array(x_data)},
    y
=np.array(y_data),
   
...)
import pandas as pd
# pandas input_fn.
my_input_fn
= tf.estimator.inputs.pandas_input_fn(
    x
=pd.DataFrame({"x": x_data}),
    y
=pd.Series(y_data),
   
...)

스파스 데이터(대부분의 값이 0인 데이터)의 경우, 세개의 인수로 인스턴스화된 SparseTensor를 채우는 대신 SparseTensor를 채웁니다.

dense_shape

텐서의 모양. 각 차원의 요소 수를 나타내는 목록을 가져옵니다. 예를 들어 dense_shape = [3,6]은 2 차원 3x6 텐서를 지정하고 dense_shape = [2,3,4]는 3 차원 2x3x4 텐서를 지정하고 dense_shape = [9]는 9 개 요소가있는 1 차원 텐서를 지정합니다. .

indices

0이 아닌 값을 포함하는 텐서 요소의 인덱스입니다. 용어 목록을 취합니다. 여기서 각 용어는 자체가 0이 아닌 요소의 색인을 포함하는 목록입니다. 요소는 0으로 인덱싱됩니다. 즉, [0,0]은 2 차원 텐서에서 첫 번째 행의 첫 번째 열에있는 요소의 인덱스 값입니다. 예 : indices = [[1,3], [ 2,4]]는 [1,3]과 [2,4]의 인덱스가 0이 아닌 값을 갖도록 지정합니다.

values

1 차원 값의 텐서. 값의 항 i은 인덱스의 항 i에 해당하며 해당 값을 지정합니다. 예를 들어, 주어진 indices = [[1,3], [2,4]]에서, 매개 변수 값 = [18, 3.6]은 텐서의 원소 [1,3]가 18의 값을 갖고, [2 , 4]의 값은 3.6입니다.

다음 코드는 3 행 5 열의 2 차원 SparseTensor를 정의합니다. 인덱스가 [0,1] 인 요소의 값은 6이고 인덱스 [2,4]가있는 요소의 값은 0.5입니다 (다른 모든 값은 0입니다).

sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],
                                values
=[6, 0.5],
                                dense_shape
=[3, 5])

이것은 다음과 같은 밀도가 높은 텐서에 해당합니다.

[[0, 6, 0, 0, 0]
 
[0, 0, 0, 0, 0]
 
[0, 0, 0, 0, 0.5]]

SparseTensor에 대한 자세한 내용은 tf.SparseTensor를 참조하십시오.


모델에 input_fn 데이터 전달


훈련을 위해 모델에 데이터를 공급하려면 입력 작업 기능에 입력 기능을 input_fn 매개 변수의 값으로 전달하기 만하면됩니다.

classifier.train(input_fn=my_input_fn, steps=2000)

input_fn 매개 변수는 함수 호출 (input_fn = my_input_fn ())의 반환 값이 아닌 함수 객체 (예 : input_fn = my_input_fn)를 수신해야합니다. 즉, 기차 코드에서 input_fn에 매개 변수를 전달하려고하면 다음 코드와 같이 TypeError가 발생합니다.

classifier.train(input_fn=my_input_fn(training_set), steps=2000)

그러나 입력 함수를 매개 변수화 할 수 있기를 원하면 다른 방법이 있습니다. 인수를 취하지 않고 input_fn과 같은 래퍼 함수를 ​​사용하여 원하는 매개 변수로 입력 함수를 호출 할 수 있습니다. 예제소스:

def my_input_fn(data_set):
 
...

def my_input_fn_training_set():
 
return my_input_fn(training_set)

classifier
.train(input_fn=my_input_fn_training_set, steps=2000)

또는 파이썬의 functools.partial 함수를 사용하여 모든 매개 변수 값이 고정 된 새 함수 객체를 생성 할 수 있습니다.

classifier.train(
    input_fn
=functools.partial(my_input_fn, data_set=training_set),
    steps
=2000)

세 번째 옵션은 input_fn 호출을 람다에 랩핑하여 input_fn 매개 변수에 전달하는 것입니다.

classifier.train(input_fn=lambda: my_input_fn(training_set), steps=2000)

위에 표시된 입력 파이프 라인을 설계하여 데이터 세트에 대한 매개 변수를 허용하는 한 가지 큰 장점은 데이터 세트 인수 만 변경하여 동일한 input_fn을 전달하여 연산을 평가하고 예측할 수 있다는 것입니다 (예 :

classifier.evaluate(input_fn=lambda: my_input_fn(test_set), steps=2000)

이 접근법은 코드 유지 보수성을 향상시킵니다. 각 유형의 작업에 대해 여러 input_fn (예 : input_fn_train, input_fn_test, input_fn_predict)을 정의 할 필요가 없습니다.


마지막으로, tf.estimator.inputs의 메소드를 사용하여 numpy 또는 pandas 데이터 세트에서 input_fn을 작성할 수 있습니다. 추가적인 이점은 num_epochs 및 shuffle과 같은 인수를 사용하여 input_fn이 데이터를 반복하는 방식을 제어 할 수 있다는 것입니다.

import pandas as pd

def get_input_fn_from_pandas(data_set, num_epochs=None, shuffle=True):
 
return tf.estimator.inputs.pandas_input_fn(
      x
=pdDataFrame(...),
      y
=pd.Series(...),
      num_epochs
=num_epochs,
      shuffle
=shuffle)
import numpy as np

def get_input_fn_from_numpy(data_set, num_epochs=None, shuffle=True):
 
return tf.estimator.inputs.numpy_input_fn(
      x
={...},
      y
=np.array(...),
      num_epochs
=num_epochs,
      shuffle
=shuffle)

보스턴 하우스 가치를위한 신경망 모델


이 튜토리얼의 나머지 부분에서는 UCI 주택 데이터 세트에서 가져온 Boston 주택 데이터의 하위 집합을 사전 처리하기위한 입력 함수를 작성하고 중앙 집 값을 예측하기 위해 신경 네트워크 회귀 분석기로 데이터를 공급하는 데이 함수를 사용합니다.


신경망을 훈련하는 데 사용할 보스턴 CSV 데이터 세트(Boston CSV data sets)는 Boston 교외 지역에 대한 다음과 같은 기능 데이터를 포함합니다.

FeatureDescription
CRIMCrime rate per capita / 1 인당 범죄율
ZNFraction of residential land zoned to permit 25,000+ sq ft lots /
 25,000+ 평방 피트를 허용하도록 구역화 된 주거용 토지의 분수
INDUSFraction of land that is non-retail business / 비 소매업 부문 토지의 비율
NOXConcentration of nitric oxides in parts per 10 million / 질소 산화물의 농도를 천만 배럴로
RMAverage Rooms per dwelling / 주거 당 RM 평균 객실
AGEFraction of owner-occupied residences built before 1940 / 1940 년 이전에 건축 된 주거지의 일부
DISDistance to Boston-area employment centers / 보스턴 지역 고용 센터까지의 거리
TAXProperty tax rate per $10,000 / 10,000 달러 당 세율
PTRATIOStudent-teacher ratio / 교사 비율

그리고 모델에서 예측할 수있는 레이블은 수천 달러의 소유자가 거주하는 주택의 중간 값 인 MEDV입니다.


설정


boston_train.csv, boston_test.csv 및 boston_predict.csv 데이터 세트를 다운로드하십시오.( boston_train.csvboston_test.csv, and boston_predict.csv.)


다음 섹션에서는 입력 함수를 작성하고 이러한 데이터 세트를 신경망 회귀 분석기에 공급하고 모델을 학습 및 평가하며 주택 가치 예측을 수행하는 방법을 단계별로 설명합니다. 완전한 최종 코드가 여기(available here)에 있습니다.


주택 데이터 가져 오기


시작하려면 가져 오기 (팬더 ​​및 텐서 흐름 포함)를 설정하고 자세한 로그 출력을 위해 자세한 정보 표시를 INFO로 설정하십시오.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools

import pandas as pd
import tensorflow as tf

tf
.logging.set_verbosity(tf.logging.INFO)

COLUMNS에있는 데이터 세트의 열 이름을 정의하십시오. 레이블과 기능을 구별하려면 FEATURES 및 LABEL도 정의하십시오. 그런 다음 3 개의 CSV (tf.train, tf.test 및 예측)를 판다 데이터 프레임으로 읽습니다.

COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
           
"dis", "tax", "ptratio", "medv"]
FEATURES
= ["crim", "zn", "indus", "nox", "rm",
           
"age", "dis", "tax", "ptratio"]
LABEL
= "medv"

training_set
= pd.read_csv("boston_train.csv", skipinitialspace=True,
                           skiprows
=1, names=COLUMNS)
test_set
= pd.read_csv("boston_test.csv", skipinitialspace=True,
                       skiprows
=1, names=COLUMNS)
prediction_set
= pd.read_csv("boston_predict.csv", skipinitialspace=True,
                             skiprows
=1, names=COLUMNS)


FeatureColumns 정의 및 회귀 변수 만들기


그런 다음 입력 데이터에 대한 FeatureColumns 목록을 작성하십시오.이 목록은 공식적으로 교육에 사용할 피처 세트를 지정합니다. 주택 데이터 세트의 모든 피쳐에는 연속 값이 포함되어 있으므로 tf.contrib.layers.real_valued_column () 함수를 사용하여 FeatureColumns를 작성할 수 있습니다.

feature_cols = [tf.feature_column.numeric_column(k) for k in FEATURES]


참고 : 기능 열에 대한 자세한 내용은이 소개를 참조하고 범주 데이터에 대한 FeatureColumns 정의 방법을 보여주는 예제는 선형 모델 자습서를 참조하십시오.


이제 신경망 회귀 모델에 대한 DNNRegressor를 인스턴스화합니다. hidden_units, 각 숨겨진 레이어의 노드 수를 지정하는 하이퍼 매개 변수 (여기서 10 개의 노드가있는 두 개의 숨겨진 레이어) 및 방금 정의한 FeatureColumns 목록이 포함 된 feature_columns를 두 가지 인수로 제공해야합니다.

regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols,
                                      hidden_units
=[10, 10],
                                      model_dir
="/tmp/boston_model")

input_fn 빌드하기


회귀 변수에 입력 데이터를 전달하려면 pandas Dataframe을 허용하고 input_fn을 반환하는 팩터 리 메서드를 작성합니다.

def get_input_fn(data_set, num_epochs=None, shuffle=True):
 
return tf.estimator.inputs.pandas_input_fn(
      x
=pd.DataFrame({k: data_set[k].values for k in FEATURES}),
      y
= pd.Series(data_set[LABEL].values),
      num_epochs
=num_epochs,
      shuffle
=shuffle)

입력 데이터는 data_set 인수에서 input_fn으로 전달됩니다. 즉, 함수는 training_set, test_set 및 prediction_set과 같이 가져온 DataFrames를 처리 할 수 ​​있습니다.


두 개의 추가 인수가 제공됩니다. num_epochs : 데이터를 반복 할 에포크 수를 제어합니다. 교육의 경우이 값을 없음으로 설정하면

input_fn은 필요한 수의 열차 단계에 도달 할 때까지 데이터를 반환합니다. 평가하고 예측하려면 1로 설정하면 input_fn이 데이터를 한 번 반복 한 다음 OutOfRangeError를 발생시킵니다. 이 오류는 평가자가 평가 또는 예측을 중지하도록 신호를 보냅니다. shuffle : 데이터 셔플 여부. 평가하고 예측하기 위해 이것을 false로 설정하면 input_fn이 데이터를 순차적으로 반복합니다. 열차의 경우이 값을 True로 설정하십시오.


회귀 자 훈련


뉴럴 네트워크 회귀 분석기를 훈련 시키려면 다음과 같이 input_fn에 전달 된 training_set을 사용하여 train을 실행하십시오.

regressor.train(input_fn=get_input_fn(training_set), steps=5000)

You should see log output similar to the following, which reports training loss for every 100 steps:

INFO:tensorflow:Step 1: loss = 483.179
INFO
:tensorflow:Step 101: loss = 81.2072
INFO
:tensorflow:Step 201: loss = 72.4354
...
INFO
:tensorflow:Step 1801: loss = 33.4454
INFO
:tensorflow:Step 1901: loss = 32.3397
INFO
:tensorflow:Step 2001: loss = 32.0053
INFO
:tensorflow:Step 4801: loss = 27.2791
INFO
:tensorflow:Step 4901: loss = 27.2251
INFO
:tensorflow:Saving checkpoints for 5000 into /tmp/boston_model/model.ckpt.
INFO
:tensorflow:Loss for final step: 27.1674.

모델 평가


다음으로, 훈련 된 모델이 테스트 데이터 세트에 대해 어떻게 수행되는지보십시오. evaluate을 실행하고, 이번에는 test_set을 input_fn으로 전달합니다.

ev = regressor.evaluate(
    input_fn
=get_input_fn(test_set, num_epochs=1, shuffle=False))

결과를 가져온 결과에서 손실을 검색하고 출력을 출력합니다.

loss_score = ev["loss"]
print("Loss: {0:f}".format(loss_score))

결과는 다음과 유사해야합니다.

INFO:tensorflow:Eval steps [0,1) for training step 5000.
INFO
:tensorflow:Saving evaluation summary for 5000 step: loss = 11.9221
Loss: 11.922098

예측하기

마지막으로이 모델을 사용하여 feature_data를 포함하고 있지만 6 개의 예제에 대한 레이블이없는 prediction_set의 집값 중앙값을 예측할 수 있습니다.

y = regressor.predict(
    input_fn
=get_input_fn(prediction_set, num_epochs=1, shuffle=False))
# .predict() returns an iterator of dicts; convert to a list and print
# predictions
predictions
= list(p["predictions"] for p in itertools.islice(y, 6))
print("Predictions: {}".format(str(predictions)))

결과에는 6 가지 주택 가치 예측치가 수천 달러로 포함되어야합니다. 예 :

Predictions: [ 33.30348587  17.04452896  22.56370163  34.74345398  14.55953979
 
19.58005714]


Deep MNIST for Experts (전문가를위한 딥 MNIST)

TensorFlow는 대규모 수치 계산을 수행하는 강력한 라이브러리입니다. 탁월한 과제 중 하나는 심 신경 네트워크를 구현하고 교육하는 것입니다. 이 튜토리얼에서 우리는 TensorFlow 모델의 기본 빌딩 블록을 배우면서 깊은 컨볼 루션 MNIST 분류자를 생성합니다.

이 소개는 신경망과 MNIST 데이터 세트에 익숙하다고 가정합니다. 그들과 배경이 없다면, 초보자를위한 소개를 확인하십시오. 시작하기 전에 반드시 TensorFlow를 설치하십시오.


About this tutorial


이 튜토리얼의 첫 번째 부분에서는 Tensorflow 모델의 기본 구현 인  mnist_softmax.py코드에서 어떤 일이 일어나는지 설명합니다. 두 번째 부분에서는 정확성을 높이는 몇 가지 방법을 보여줍니다.


이 튜토리얼의 각 코드 스 니펫을 복사하여 Python 환경에 붙여 넣거나, 완전히 구현 된 깊은 네트를 mnist_deep.py 에서 다운로드 할 수 있습니다.


이 튜토리얼에서 우리가 달성 할 수있는 것 :

-이미지의 모든 픽셀을 관찰하여 MNIST 숫자를 인식하는 모델 인 softmax 회귀 함수를 만듭니다.

-Tensorflow를 사용하여 수천 가지 사례를 "조사"하여 숫자를 인식하도록 모델을 교육합니다 (첫 번째 Tensorflow 세션을 실행하여 수행)

-테스트 데이터로 모델의 정확성을 확인하십시오.

-결과를 향상시키기 위해 다중 컨볼 루션 신경망을 구축, 훈련 및 테스트합니다.


Setup

모델을 만들기 전에 먼저 MNIST 데이터 세트를로드하고 TensorFlow 세션을 시작합니다.

MNIST 데이터로드

이 자습서의 코드를 복사하여 붙여 넣는 경우 다음 두 줄의 코드를 사용하여 데이터를 자동으로 다운로드하고 읽습니다.
from tensorflow.examples.tutorials.mnist import input_data
mnist
= input_data.read_data_sets('MNIST_data', one_hot=True)
여기서 mnist는 훈련, 검증 및 테스트 세트를 NumPy 배열로 저장하는 간단한 클래스입니다. 또한 아래에 사용할 데이터 minibatches를 반복하는 함수를 제공합니다.

TensorFlow InteractiveSession 시작

TensorFlow는 매우 효율적인 C ++ 백엔드를 사용하여 계산을 수행합니다. 이 백엔드에 대한 연결을 세션이라고합니다. TensorFlow 프로그램의 일반적인 사용법은 먼저 그래프를 만든 다음 세션에서 시작하는 것입니다.
여기서 우리는 편리한 InteractiveSession 클래스를 대신 사용합니다. TensorFlow는 코드 구조화 방법을보다 융통성있게 만듭니다. 그래프를 실행하는 계산 그래프를 작성하는 조작을 인터리브 할 수 있습니다. 이것은 IPython과 같은 대화식 환경에서 작업 할 때 특히 편리합니다. InteractiveSession을 사용하지 않는 경우, 세션을 시작하고 그래프를 시작하기 전에 전체 계산 그래프를 작성해야합니다.
import tensorflow as tf
sess
= tf.InteractiveSession()
계산 그래프

파이썬에서 효율적인 수치 계산을 수행하기 위해 일반적으로 다른 언어로 구현 된 매우 효율적인 코드를 사용하여 파이썬 외부의 행렬 곱셈과 같은 값 비싼 연산을 수행하는 NumPy와 같은 라이브러리를 사용합니다. 불행하게도, 모든 작업을 파이썬으로 다시 전환하면 많은 오버 헤드가 발생할 수 있습니다. 이 오버 헤드는 GPU에서 계산을 실행하거나 데이터를 전송하는 데 비용이 많이 드는 분산 된 방식으로 실행하려는 경우 특히 나쁩니다.

TensorFlow는 파이썬 밖에서도 힘든 작업을 수행하지만이 오버 헤드를 피하기 위해 한 걸음 더 나아갑니다. TensorFlow는 Python과 독립적으로 고가의 단일 연산을 실행하는 대신 Python 외부에서 실행되는 상호 작용하는 연산의 그래프를 설명합니다. 이 방법은 Theano 또는 Torch에서 사용되는 방법과 유사합니다.

따라서 파이썬 코드의 역할은이 외부 계산 그래프를 작성하고 계산 그래프의 어느 부분을 실행해야하는지 지시하는 것입니다. 자세한 내용은 TensorFlow 시작하기의 계산 그래프 섹션을 참조하십시오.

Softmax 회귀 모델 구축

이 섹션에서는 단일 선형 레이어가있는 softmax 회귀 모델을 작성합니다. 다음 섹션에서 우리는 이것을 다중 계층 콘볼 루션 네트워크가있는 softmax 회귀의 경우까지 확장 할 것입니다.

Placeholders
우리는 입력 이미지와 대상 출력 클래스에 대한 노드를 생성하여 계산 그래프를 작성하기 시작합니다.
+ 초급자 버전 및 기본 mnist 튜토리얼과 같은 방법으로 선언이 됩니다.
x = tf.placeholder(tf.float32, shape=[None, 784])
y_
= tf.placeholder(tf.float32, shape=[None, 10])
여기서 x와 y는 특정 값이 아닙니다. 오히려 각각은 자리 표시 자입니다. TensorFlow에 계산을 실행하도록 요청할 때 입력 할 값입니다.

입력 이미지 x는 2 차원 텐서 부동 소수점 수로 구성됩니다. 여기서 우리는 [없음, 784]의 모양을 할당합니다. 여기서 784는 단일 평평한 28x28 픽셀 MNIST 이미지의 차원이며, 없음은 배치 크기에 해당하는 첫 번째 차원이 모든 크기 일 수 있음을 나타냅니다. 목표 출력 클래스 y_는 또한 2d 텐서로 구성되며, 각 행은 해당 MNIST 이미지가 속하는 디지트 클래스 (0에서 9까지)를 나타내는 1 핫 10 차원 벡터입니다.

자리 표시 자에 대한 shape 인수는 선택 사항이지만 TensorFlow가 일치하지 않는 텐서 모양에서 발생하는 버그를 자동으로 잡을 수 있습니다.

Variables

이제 우리 모델에 대한 가중치 W와 편향치 b를 정의합니다. 우리는 이들을 추가 입력과 같이 취급한다고 상상할 수도 있지만 TensorFlow는이를 처리하는 더 좋은 방법을 가지고 있습니다 : 가변. 변수는 TensorFlow의 계산 그래프에있는 값입니다. 그것은 계산에 의해 사용되거나 심지어 수정 될 수 있습니다. 기계 학습 응용 프로그램에서 일반적으로 모델 매개 변수는 변수입니다.
W = tf.Variable(tf.zeros([784,10]))
b
= tf.Variable(tf.zeros([10]))
tf.Variable에 대한 호출에서 각 매개 변수의 초기 값을 전달합니다. 이 경우 W와 b를 0으로 채워진 텐서로 초기화합니다. W는 784x10 행렬 (784 개의 입력 피처와 10 개의 출력이 있기 때문에)이고 b는 10 개의 클래스가 있으므로 10 차원 벡터입니다.

변수는 세션 내에서 사용되기 전에 해당 세션을 사용하여 초기화되어야합니다. 이 단계는 이미 지정된 초기 값 (이 경우에는 0으로 가득 찬 텐서)을 취하여 각 변수에 할당합니다. 이 작업은 모든 변수에 대해 동시에 수행 할 수 있습니다.
sess.run(tf.global_variables_initializer())

Predicted Class and Loss Function

이제 회귀 모델을 구현할 수 있습니다. 한 줄만 필요합니다! 벡터화 된 입력 이미지 x에 가중치 행렬 W를 곱하고 바이어스 b를 더합니다.

y = tf.matmul(x,W) + b
손실 기능을 쉽게 지정할 수 있습니다. 손실은 단일 예에서 모델의 예측이 얼마나 나쁜지를 나타냅니다. 우리는 모든 예제를 통해 교육하면서이를 최소화하려고 노력합니다. 여기서 우리의 손실 함수는 목표와 모델의 예측에 적용되는 softmax 활성화 함수 간의 교차 엔트로피입니다. 초보자 가이드 에서처럼 안정된 공식을 사용합니다.
cross_entropy = tf.reduce_mean(
    tf
.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
tf.nn.softmax_cross_entropy_with_logits는 모델의 비표준 모델 예측에 softmax를 내부적으로 적용하고 모든 클래스에서 합계를 계산하며, tf.reduce_mean은 이러한 합계에 대한 평균을 취합니다.

Train the Model

이제 모델 및 교육 손실 기능을 정의 했으므로 TensorFlow를 사용하여 교육하는 것이 간단합니다. TensorFlow는 전체 계산 그래프를 알고 있으므로 자동 차별화를 사용하여 각 변수에 대한 손실 그라디언트를 찾을 수 있습니다. TensorFlow에는 다양한 내장 최적화 알고리즘이 있습니다. 이 예에서는 교차 엔트로피를 내리기 위해 steepest gradient descent를 단계 길이 0.5로 사용합니다.
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
TensorFlow가 실제로 한 줄에서 계산 한 것은 새로운 연산을 계산 그래프에 추가하는 것이 었습니다. 이러한 작업에는 그라디언트를 계산하고, 매개 변수 업데이트 단계를 계산하고, 매개 변수에 업데이트 단계를 적용하는 작업이 포함되었습니다.

반환 된 작업 train_step을 실행하면 그라데이션 강하 업데이트가 매개 변수에 적용됩니다. 따라서 train_step을 반복적으로 실행하여 모델 교육을 수행 할 수 있습니다.
for _ in range(1000):
  batch
= mnist.train.next_batch(100)
  train_step
.run(feed_dict={x: batch[0], y_: batch[1]})
각 교육 반복마다 100 개의 교육 사례를로드합니다. 그런 다음 feed_dict를 사용하여 place_holder x 및 y_를 학습 예제로 대체하여 train_step 연산을 실행합니다. feed_dict를 사용하여 계산 그래프에서 임의의 텐서를 대체 할 수 있습니다. 단지 자리 표시 자에만 국한되지 않습니다.

Evaluate the Model (모델 평가)

우리 모델은 얼마나 잘 했습니까?

먼저 정확한 라벨 위치를 예측할 것입니다. tf.argmax는 어떤 축을 따라 텐서에서 가장 높은 엔트리의 인덱스를 제공하는 매우 유용한 함수입니다. 예를 들어, tf.argmax (y, 1)는 우리 모델이 각 입력에 대해 가장 가능성이 있다고 생각하는 레이블이고 tf.argmax (y_, 1)는 실제 레이블입니다. tf.equal을 사용하여 예측이 진실과 일치하는지 확인할 수 있습니다.
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
그건 우리에게 불공정 목록을 제공합니다. 어떤 부분이 올바른지 결정하기 위해 부동 소수점 수로 캐스팅 한 다음 평균을 취합니다. 예를 들어, [True, False, True, True]는 [1,0,1,1]이되어 0.75가됩니다.
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
마지막으로 테스트 데이터의 정확성을 평가할 수 있습니다. 이것은 약 92 % 정확해야합니다.
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Build a Multilayer Convolutional Network

멀티 레이어 컨볼 루션 네트워크 구축


MNIST에서 92 % 정확도를 얻는 것은 좋지 않습니다. 그것은 거의 당황스럽게도 나빴습니다. 이 섹션에서는 아주 단순한 모델에서 중간 정도의 복잡한 것, 즉 작은 콘볼 루션 신경 네트워크로 점프 할 것입니다. 이것은 우리에게 99.2 %의 정확성을 줄 것입니다. 예술 수준은 아니지만 존경 할 만합니다.


무게 초기화


이 모델을 만들려면 많은 가중치와 편향을 만들어야합니다. 일반적으로 대칭 분리를 위해 소량의 잡음을 사용하여 가중치를 초기화하고 0 기울기를 방지해야합니다. 우리가 ReLU(ReLU) 뉴런을 사용하고 있기 때문에, "죽은 뉴런"을 피하기 위해 약간 긍정적 인 초기 바이어스로 초기화하는 것이 좋습니다. 모델을 빌드하는 동안이 작업을 반복적으로 수행하는 대신, 우리를 위해이 작업을 수행하는 두 가지 편리한 기능을 만들어 보겠습니다.

+여기서 ReLU가 나오는데 CNN 및 점점 들어갈 수록 많이 사용되는 용어입니다.

def weight_variable(shape):
  initial
= tf.truncated_normal(shape, stddev=0.1)
 
return tf.Variable(initial)

def bias_variable(shape):
  initial
= tf.constant(0.1, shape=shape)
 
return tf.Variable(initial)

회선 및 풀링


TensorFlow는 또한 컨볼 루션 및 풀링 작업에 많은 유연성을 제공합니다. 경계를 어떻게 처리할까요? 우리의 보폭은 무엇입니까? 이 예에서는 항상 바닐라 버전을 선택합니다. 우리의 컨볼 루션은 1의 보폭을 사용하며 출력이 입력과 동일한 크기가되도록 0으로 채워집니다. 우리의 풀링은 2x2 블록을 넘어서 평범한 오래된 최대 풀링입니다. 코드를보다 깨끗하게 유지하려면 이러한 연산을 함수로 추상화합시다.

def conv2d(x, W):
 
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
 
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides
=[1, 2, 2, 1], padding='SAME')

첫 번째 콘볼 루션 레이어


이제 첫 번째 레이어를 구현할 수 있습니다. 컨볼 루션 (convolution)과 최대 풀링 (max pooling)으로 구성됩니다. 컨볼 루션은 각 5x5 패치에 대해 32 개의 기능을 계산합니다. 그것의 체중 텐서는 [5, 5, 1, 32]의 모양을 가질 것입니다. 처음 두 차원은 패치 크기이고, 다음은 입력 채널 수이고, 마지막은 출력 채널 수입니다. 각 출력 채널에 대한 구성 요소가있는 바이어스 벡터도 갖게됩니다.

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1
= bias_variable([32])

레이어를 적용하기 위해 먼저 x와 4d 텐서의 형태를 바꾸고 두 번째 및 세 번째 차원은 이미지 너비와 높이에 해당하고 최종 차원은 색상 채널 수에 해당합니다.

x_image = tf.reshape(x, [-1, 28, 28, 1])

우리는 x_image와 체중 텐서를 곱하고, 바이어스를 추가하고, ReLU 함수를 적용하고, 마지막으로 최대 풀을 적용합니다. max_pool_2x2 메소드는 이미지 크기를 14x14로 줄입니다.

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1
= max_pool_2x2(h_conv1)

두 번째 컨벌루션 레이어


깊은 네트워크를 구축하기 위해이 유형의 여러 레이어를 쌓습니다. 두 번째 레이어에는 각 5x5 패치에 대해 64 개의 기능이 있습니다.

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2
= bias_variable([64])

h_conv2
= tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2
= max_pool_2x2(h_conv2)

조밀하게 연결된 레이어


이미지 크기가 7x7로 축소되었으므로 전체 이미지에서 처리 할 수 ​​있도록 1024 개의 뉴런이있는 완전히 연결된 레이어를 추가합니다. 우리는 풀링 레이어에서 텐서를 벡터 묶음으로 변형하고, 가중치 행렬을 곱하고, 바이어스를 추가하고, ReLU를 적용합니다.

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1
= bias_variable([1024])

h_pool2_flat
= tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1
= tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

DropOut


초과 맞춤을 줄이기 위해 판독 레이어 앞에 드롭 아웃을 적용합니다. 우리는 드롭 아웃 중에 뉴런의 출력이 유지 될 확률에 대한 자리 표시자를 만듭니다. 이것은 우리가 훈련 중에 dropout을 켜고 시험하는 동안 turn off 할 수있게 해줍니다. TensorFlow의 tf.nn.dropout op는 마스킹 외에도 스케일링 뉴런 출력을 자동으로 처리하므로 드롭 아웃은 추가 스케일링 없이도 작동합니다 .

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop
= tf.nn.dropout(h_fc1, keep_prob)

판독 레이어


마지막으로 위의 한 계층 softmax 회귀와 마찬가지로 계층을 추가합니다.


W_fc2 = weight_variable([1024, 10])
b_fc2
= bias_variable([10])

y_conv
= tf.matmul(h_fc1_drop, W_fc2) + b_fc2


차이점은 다음과 같습니다.


-가파른 그라데이션 하강 옵티 마이저를보다 정교한 ADAM 옵티 마이저로 대체 할 것입니다.

-feed_dict에 추가 매개 변수 keep_prob를 포함시켜 드롭 아웃 속도를 제어합니다.

-우리는 교육 과정에서 매 100 번째 반복에 로깅을 추가 할 것입니다.


또한 tf.InteractiveSession보다는 tf.Session을 사용할 것입니다. 이렇게하면 그래프를 만드는 과정 (모델 선택)과 그래프를 평가하는 과정 (모델 피팅)이 더 잘 분리됩니다. 일반적으로 더 깨끗한 코드를 만듭니다. tf.Session은 with 블록 내에서 만들어 지므로 블록이 종료되면 자동으로 삭제됩니다.


이 코드를 자유롭게 실행하십시오. 2 만 건의 교육 반복 작업을 수행하며 프로세서에 따라 다소 시간이 걸릴 수 있습니다 (최대 30 분 소요).

cross_entropy = tf.reduce_mean(
    tf
.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step
= tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction
= tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy
= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
  sess
.run(tf.global_variables_initializer())
 
for i in range(20000):
    batch
= mnist.train.next_batch(50)
   
if i % 100 == 0:
      train_accuracy
= accuracy.eval(feed_dict={
          x
: batch[0], y_: batch[1], keep_prob: 1.0})
     
print('step %d, training accuracy %g' % (i, train_accuracy))
    train_step
.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

 
print('test accuracy %g' % accuracy.eval(feed_dict={
      x
: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

이 코드를 실행 한 후 최종 테스트 세트 정확도는 약 99.2 % 여야합니다.


우리는 TensorFlow를 사용하여 매우 정교한 심층 학습 모델을 빠르고 쉽게 작성, 교육 및 평가하는 방법을 배웠습니다.


1 :이 작은 컨볼 루션 네트워크의 경우 성능은 실제로 드롭 아웃 유무와 거의 동일합니다. 드롭 아웃은 종종 과잉을 줄이는 데 효과적이지만 매우 큰 신경 네트워크를 학습 할 때 가장 유용합니다.




+ Relu와 Dropout을 활용하여 심층 신경망을 연결하는 방법 및 히든레이어를 활용하여 서로 연결된 네트워크망을  구성하는 방법을 간단하게 나왔습니다. 추후의 CNN 을 참고하게 된다면 더 많은 레이어 구성 및 복잡하지만 단순하게 구성하는 방법의 튜토리얼이 나옵니다.


출처 : https://www.tensorflow.org/get_started/mnist/pros







+ 지난 텐서플로우 게시글에 이어서 튜토리얼 2를 진행하겠습니다.

+ 적힌 부분이 추가설명 및 의견입니다.. ㅎㅎ


  기계 학습에 대한 자세한 내용은이 튜토리얼의 범위를 벗어난다. 

그러나 TensorFlow는 손실 함수를 최소화하기 위해 각 변수를 천천히 변경하는 옵티 마이저를 제공합니다.

 가장 간단한 옵티 마이저는 그래디언트 디센트입니다. 

해당 변수에 대한 손실 파생의 크기에 따라 각 변수를 수정합니다. 일반적으로 심볼릭 파생물을 수동으로 계산하는 것은 지루하고 오류가 발생하기 쉽습니다. 

결과적으로 TensorFlow는 tf.gradients 함수를 사용하여 모델 설명 만 제공된 파생물을 자동으로 생성 할 수 있습니다. 단순화를 위해 일반적으로 옵티마이 저가이를 수행합니다. 


+ 마땅한 번역할 단어가 안떠올라서 마지막 구글 번역을 돌렸더니 단어가 이상하네요 추가적으로 예제 코드를 보면서 설명하겠습니다.


예를 들어,


optimizer = tf.train.GradientDescentOptimizer(0.01)
train
= optimizer.minimize(loss)
sess.run(init) # reset values to incorrect defaults.
for i in range(1000):
  sess
.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]})

print(sess.run([W, b]))



이제 실제 기계 학습을했습니다!

+ 이번 코드는 GradientDescentOptimizer 0.01비율로 손실을 최소화 시키고 선형 모델인 

+ y = Wx+b 에서 x값과 y값을 주어졌을 때, W와, b의 값을 1000번의 학습된 결과를 통해 

+ 값을 표현한 것입니다.


 이 간단한 선형 회귀를 수행하더라도 TensorFlow 핵심 코드가 많이 필요하지는 않지만 모델에 데이터를 입력하는 더 복잡한 모델과 메서드는 더 많은 코드가 필요합니다.

 따라서 TensorFlow는 일반적인 패턴, 구조 및 기능에 대해 더 높은 수준의 추상화를 제공합니다. 

우리는 이어서 이러한 추상화를 사용하는 방법을 배웁니다.


완료된 프로그램 

완성 된 훈련 가능한 선형 회귀 모델은 다음과 같습니다.


import numpy as np
import tensorflow as tf

# Model parameters
W
= tf.Variable([.3], tf.float32)
b
= tf.Variable([-.3], tf.float32)
# Model input and output
x
= tf.placeholder(tf.float32)
linear_model
= W * x + b
y
= tf.placeholder(tf.float32)
# loss
loss
= tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer
= tf.train.GradientDescentOptimizer(0.01)
train
= optimizer.minimize(loss)
# training data
x_train
= [1,2,3,4]
y_train
= [0,-1,-2,-3]
# training loop
init
= tf.global_variables_initializer()
sess
= tf.Session()
sess
.run(init) # reset values to wrong
for i in range(1000):
  sess
.run(train, {x:x_train, y:y_train})

# evaluate training accuracy
curr_W
, curr_b, curr_loss  = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))



+ 이 코드의 함수를 시각화 해서 본다면

TensorBoard final model visualization



tf.contrib.learn


tf.contrib.learn은 다음을 포함하여 기계 학습의 메커니즘을 단순화하는 상위 TensorFlow 라이브러리입니다.

-실행중인 학습 루프

-평가 루프 실행

-데이터 세트 관리

-수유 관리

tf.contrib.learn은 많은 공통 모델을 정의합니다.


기본 사용법

tf.contrib.learn을 사용하면 선형 회귀 프로그램이 얼마나 단순 해지는 지 주목하십시오


import tensorflow as tf
# NumPy is often used to load, manipulate and preprocess data.
import numpy as np

# Declare list of features. We only have one real-valued feature. There are many
# other types of columns that are more complicated and useful.
features
= [tf.contrib.layers.real_valued_column("x", dimension=1)]

# An estimator is the front end to invoke training (fitting) and evaluation
# (inference). There are many predefined types like linear regression,
# logistic regression, linear classification, logistic classification, and
# many neural network classifiers and regressors. The following code
# provides an estimator that does linear regression.
estimator
= tf.contrib.learn.LinearRegressor(feature_columns=features)

# TensorFlow provides many helper methods to read and set up data sets.
# Here we use `numpy_input_fn`. We have to tell the function how many batches
# of data (num_epochs) we want and how big each batch should be.
x
= np.array([1., 2., 3., 4.])
y
= np.array([0., -1., -2., -3.])
input_fn
= tf.contrib.learn.io.numpy_input_fn({"x":x}, y, batch_size=4,
                                              num_epochs
=1000)

# We can invoke 1000 training steps by invoking the `fit` method and passing the
# training data set.
estimator
.fit(input_fn=input_fn, steps=1000)

# Here we evaluate how well our model did. In a real example, we would want
# to use a separate validation and testing data set to avoid overfitting.
print(estimator.evaluate(input_fn=input_fn))



 {'global_step': 1000, 'loss': 1.9650059e-11}

+ 위 처럼 결과가 나올 것입니다.



커스텀 모델


tf.contrib.learn은 사용자를 미리 정의 된 모델로 잠그지 않습니다. 

TensorFlow에 내장되어 있지 않은 커스텀 모델을 만들고 싶다고 가정 해 보겠습니다. 

tf.contrib.learn의 데이터 세트, 수유, 교육 등의 높은 수준의 추상화는 여전히 유지할 수 있습니다. 

설명을 위해, 우리는보다 낮은 수준의 TensorFlow API에 대한 지식을 사용하여 LinearRegressor에 대한 자체 등가 모델을 구현하는 방법을 보여줍니다.


tf.contrib.learn과 작동하는 사용자 정의 모델을 정의하려면 tf.contrib.learn.Estimator를 사용해야합니다. tf.contrib.learn.LinearRegressor는 실제로 tf.contrib.learn.Estimator의 하위 클래스입니다. 

Estimator를 하위 분류하는 대신 Estimator에게 예측, 교육 단계 및 손실을 평가할 수있는 방법을 

tf.contrib.learn에게 알려주는 model_fn 함수를 제공하기 만하면됩니다. 코드는 다음과 같습니다.


import numpy as np
import tensorflow as tf
# Declare list of features, we only have one real-valued feature
def model(features, labels, mode):
 
# Build a linear model and predict values
  W
= tf.get_variable("W", [1], dtype=tf.float64)
  b
= tf.get_variable("b", [1], dtype=tf.float64)
  y
= W*features['x'] + b
 
# Loss sub-graph
  loss
= tf.reduce_sum(tf.square(y - labels))
 
# Training sub-graph
  global_step
= tf.train.get_global_step()
  optimizer
= tf.train.GradientDescentOptimizer(0.01)
  train
= tf.group(optimizer.minimize(loss),
                   tf
.assign_add(global_step, 1))
 
# ModelFnOps connects subgraphs we built to the
 
# appropriate functionality.
 
return tf.contrib.learn.ModelFnOps(
      mode
=mode, predictions=y,
      loss
=loss,
      train_op
=train)

estimator
= tf.contrib.learn.Estimator(model_fn=model)
# define our data set
x
= np.array([1., 2., 3., 4.])
y
= np.array([0., -1., -2., -3.])
input_fn
= tf.contrib.learn.io.numpy_input_fn({"x": x}, y, 4, num_epochs=1000)

# train
estimator
.fit(input_fn=input_fn, steps=1000)
# evaluate our model
print(estimator.evaluate(input_fn=input_fn, steps=10))




커스텀 모델 () 함수의 내용이 저수준 API의 수동 모델 트레이닝 루프와 얼마나 흡사한지 주목하십시오.



다음 단계


이제 TensorFlow의 기본 지식을 습득했습니다. 우리는 더 많은 것을 배우기 위해 여러분이 볼 수있는 튜토리얼을 몇 가지 더 가지고 있습니다. 초보자의 경우 초보자 인 경우 MNIST를 참조하십시오. 그렇지 않은 경우 전문가를위한 Deep MNIST를 참조하십시오


+ 다음 튜토리얼은 손글씨 인식을 하는 것입니다.

+ 이번 튜토리얼에서는 API에서 얼만큼 잘 제공해주는지 알려주는 것 같았습니다.

+ 다음 튜토리얼 부터는 점점 머신러닝과 관련하여 인곤지능과 가까워질 것 입니다. 

+ 다 같이 힘내봅시다.








TensorFlow 시작하기(설치 이후 첫 튜토리얼)


이 블로그는 첫 번째 튜토리얼을 번역 후 필요에 따라 중간중간 설명을 첨가하였습니다.

원본 글은 https://www.tensorflow.org/ 에 포함되어 있습니다.


이 튜토리얼은 TensorFlow에서 프로그래밍을 시작하도록 안내합니다.

이 게시글을 읽기 전에 TensorFlow를 설치하십시오. 설치 방법은 이전 글에 있습니다.


이 가이드를 최대한 활용하려면 다음 사항을 알아야합니다.

파이썬으로 프로그래밍하는 법. (C#, Java는 해봤었습니다. 뭔가 유저 친화적이지만, 배우지 않았었기 때문에, 미흡한 점은 많습니다만, 구글링 및 튜토리얼 따라하면서 많이 배워가고 있습니다.

처음 하시는 분들도 두려워말고 도전하실 수 있습니다.)

최소한 배열에 대해서는.

이상적으로는 기계 학습에 관한 것입니다. 그러나 기계 학습에 대해 거의 또는 전혀 알지 못하는 경우에도 여전히 읽어야 할 첫 번째 가이드입니다.


TensorFlow는 여러 API를 제공합니다. 최저 수준의 API 인 TensorFlow Core는 완벽한 프로그래밍 제어 기능을 제공합니다. TensorFlow Core는 기계 학습 연구자 및 모델을 미세하게 제어해야하는 사람들에게 권장됩니다. 높은 수준의 API는 TensorFlow Core 위에 구축됩니다. 이러한 상위 수준의 API는 일반적으로 TensorFlow Core보다 배우고 사용하기가 쉽습니다. 또한 상위 수준의 API는 반복적 인 작업을 여러 사용자간에보다 쉽고 일관되게 만듭니다. tf.contrib.learn과 같은 고급 API를 사용하면 데이터 세트, 견적 도구, 교육 및 추론을 관리 할 수 ​​있습니다. 메소드 이름에 contrib가 포함 된 상위 수준의 TensorFlow API 중 일부는 아직 개발 중입니다. 이후의 TensorFlow 릴리스에서 일부 contrib 메소드가 변경되거나 더 이상 사용되지 않을 수도 있습니다. 이 가이드는 TensorFlow Core에 대한 자습서로 시작됩니다. 나중에 tf.contrib.learn에서 동일한 모델을 구현하는 방법을 보여줍니다. TensorFlow를 아는 것보다 핵심적인 API를 사용할 때 핵심 원칙을 통해 내부적으로 일하는 방식에 대한 훌륭한 정신적 모델을 얻을 수 있습니다.


Tensor

TensorFlow에서 데이터의 중심 단위는 텐서입니다. 텐서는 임의의 수의 차원으로 배열 된 프리미티브 값 집합으로 구성됩니다. 텐서의 랭크는 차원 수입니다. 다음은 텐서 (tensors)의 몇 가지 예입니다.

3 # a rank 0 tensor; this is a scalar with shape []
[1. ,2., 3.] # a rank 1 tensor; this is a vector with shape [3]
[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]

+ 기존의 알고 있던 데이터 배열과는 살짝 다른 느낌입니다. 즉 집합의 개념으로 사용됩니다.

+ 텐서의 랭크는 차원의 수 라고 되어있는 것 처럼, 각 [ ] 괄호를 주의 깊게 보시면 대략적인 이해에 도움이 될 것입니다.


TensorFlow 핵심 자습서

TensorFlow 가져 오기


TensorFlow 프로그램에 대한 표준 import 문은 다음과 같습니다.


python

>>>  import tensorflow as tf

+ 입력 후 ">>>"가 안보인다면, tensorflow 설치를 완료 안했을 경우가 많습니다. 



이렇게하면 파이썬에서 TensorFlow의 모든 클래스, 메소드 및 심볼에 액세스 할 수 있습니다. 대부분의 문서에서는 이미이 작업을 수행했다고 가정합니다.



The Computational Graph


TensorFlow Core 프로그램은 두 개의 개별 섹션으로 구성되어 있다고 생각할 수 있습니다.


1.계산 그래프 작성. (Building the computational graph.)

2.전산 그래프를 실행합니다. (Running the computational graph.)

계산 그래프는 일련의 TensorFlow 작업을 노드 그래프로 배열 한 것입니다. 간단한 전산 그래프를 작성해 봅시다. 각 노드는 0 이상의 텐서를 입력으로 사용하고 텐서를 출력으로 생성합니다. 노드의 한 유형은 상수입니다. 모든 TensorFlow 상수와 마찬가지로 입력을받지 않으며 내부적으로 저장하는 값을 출력합니다. 다음과 같이 두 개의 부동 소수점 Tensors node1과 node2를 만들 수 있습니다.


node1 = tf.constant(3.0, tf.float32)
node2
= tf.constant(4.0) # also tf.float32 implicitly
print(node1, node2)


마지막 print 서술문은


Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32)


Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32)
Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32)

예상대로 노드 인쇄는 3.0과 4.0 값을 출력하지 않습니다. 대신 평가할 때 각각 3.0과 4.0을 생성하는 노드입니다. 노드를 실제로 평가하려면 세션 내에서 계산 그래프를 실행해야합니다. 세션은 TensorFlow 런타임의 컨트롤과 상태를 캡슐화합니다.


다음 코드는 Session 객체를 만든 다음 run 메소드를 호출하여 node1과 node2를 계산할 수있는 계산 그래프를 실행합니다. 다음과 같이 세션에서 전산 그래프를 실행합니다.

sess = tf.Session()
print(sess.run([node1, node2]))

3.0과 4.0의 예상 값을 봅니다.


Tensor 노드를 연산과 결합하여 더 복잡한 계산을 할 수 있습니다 (연산도 노드입니다). 예를 들어 두 개의 상수 노드를 추가하고 다음과 같이 새 그래프를 생성 할 수 있습니다.

node3 = tf.add(node1, node2)
print("node3: ", node3)
print("sess.run(node3): ",sess.run(node3))

+ 위의 결과되로 표시 되었다면 노드의 값을 tf.add를 통해 합쳐진 것을 볼 수 있습니다.

TensorFlow는 전산 그래프의 그림을 표시 할 수있는 TensorBoard라는 유틸리티를 제공합니다. 다음은 TensorBoard가 그래프를 시각화하는 방법을 보여주는 스크린 샷입니다.

TensorBoard screenshot

+텐서보드의 설치 및 활용 법은 추후 게시글에 올리도록 하겠습니다. 데이터의 흐름도의 이해를 위해 스크린샷 처럼 표시되는구나 정도로 일단 이해하시고 넘어가시면 됩니다.


이 도표는 항상 일정한 결과를 산출하기 때문에 특히 흥미 롭지 않습니다. 자리 표시 자라고하는 외부 입력을 허용하도록 그래프를 매개 변수화 할 수 있습니다. 자리 표시자는 나중에 값을 제공하겠다는 약속입니다.

a = tf.placeholder(tf.float32)
b
= tf.placeholder(tf.float32)
adder_node
= a + b  # + provides a shortcut for tf.add(a, b)

앞의 세 줄은 함수 또는 람다와 비슷하지만 두 개의 입력 매개 변수 (a 및 b)를 정의한 다음 해당 매개 변수에 대한 연산을 정의합니다. feed_dict 매개 변수를 사용하여 이러한 입력란에 구체적인 값을 제공하는 Tensors를 지정하여이 그래프를 여러 입력으로 평가할 수 있습니다.

print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))


+ 출력 결과 물은 봣을 때 첫 번쨰 명령 문의 계산식은

3+ 4.5 이고

두번째 계산은

a: 1 + b: 2  = 3

a: 3 + b: 4 = 7

의 결과값을 표현하는 것입니다.


In TensorBoard, the graph looks like this:

TensorBoard screenshot


다른 연산을 추가하여 계산 그래프를 더 복잡하게 만들 수 있습니다. 예를 들어,

add_and_triple = adder_node * 3.
print(sess.run(add_and_triple, {a: 3, b:4.5}))
add_and_triple = adder_node * 3.
print(sess.run(add_and_triple, {a: 3, b:4.5}))
add_and_triple = adder_node * 3.
print(sess.run(add_and_triple, {a: 3, b:4.5}))

+ 연산 : (3+4.5)*3


The preceding computational graph would look as follows in TensorBoard:

TensorBoard screenshot

기계 학습에서 우리는 전형적으로 위와 같은 임의의 입력을 취할 수있는 모델을 원할 것입니다. 모델을 학습 가능하게 만들려면 동일한 입력으로 새로운 출력을 얻기 위해 그래프를 수정할 수 있어야합니다. 변수를 사용하면 그래프에 학습 가능한 매개 변수를 추가 할 수 있습니다. 그것들은 타입과 초기 값으로 구성됩니다 :

W = tf.Variable([.3], tf.float32)
b
= tf.Variable([-.3], tf.float32)
x
= tf.placeholder(tf.float32)
linear_model
= W * x + b

상원 의원은 제소자를 호출 할 때 값이 변하지 않을 것입니다. 반대로 할 수 없습니다. TensorFlow 프로그램의 모든 변수를 다음과 같이 사용하십시오.

init = tf.global_variables_initializer()
sess
.run(init)

init이 모든 전역 변수를 초기화하는 TensorFlow 하위 그래프의 핸들임을 인식하는 것이 중요합니다. sess.run을 호출 할 때까지 변수는 초기화되지 않습니다.


x는 자리 표시 자이므로 다음과 같이 x의 여러 값에 대해 linear_model을 동시에 평가할 수 있습니다.


print(sess.run(linear_model, {x:[1,2,3,4]}))


+ x를 순차적으로 대입하면서 출력하는 것을 볼 수 있습니다.


우리는 모델을 만들었지 만 아직 얼마나 좋은지 모릅니다. 훈련 데이터에 대한 모델을 평가하려면 원하는 값을 제공하기 위해 y 자리 표시자가 필요하며 손실 함수를 작성해야합니다.



손실 함수는 제공된 모델로부터 현재 모델이 얼마나 떨어져 있는지를 측정합니다. 현재 모델과 제공된 데이터 사이의 델타의 제곱을 합한 선형 회귀에 표준 손실 모델을 사용합니다. linear_model - y는 각 요소가 해당 예제의 오류 델타 인 벡터를 만듭니다. tf.square를 호출하여 오류를 제곱합니다. 그런 다음 모든 제곱 된 오류를 합하여 tf.reduce_sum을 사용하여 모든 예제의 오류를 추상화하는 단일 스칼라를 만듭니다.


y = tf.placeholder(tf.float32)
squared_deltas
= tf.square(linear_model - y)
loss
= tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))




W와 b의 값을 -1과 1의 완벽한 값으로 재 할당하여 수동으로 향상시킬 수 있습니다. 변수는 tf.Variable에 제공된 값으로 초기화되지만 tf.assign과 같은 연산을 사용하여 변경할 수 있습니다. 예를 들어, W = -1 및 b = 1은 우리 모델에 대한 최적의 매개 변수입니다. 그에 따라 W와 B를 변경할 수 있습니다.


fixW = tf.assign(W, [-1.])
fixb
= tf.assign(b, [1.])
sess
.run([fixW, fixb])
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))

마지막 인쇄는 손실이 0임을 보여줍니다.


우리는 W와 B의 "완벽한"값을 추측했지만 기계 학습의 요점은 올바른 모델 매개 변수를 자동으로 찾는 것입니다. 다음 섹션에서이를 수행하는 방법을 보여줄 것입니다.




+ 지금은 손실이 0 인 것인 것처럼 간단한 계산식으로 했지만, 나중에 갈 수록 소수도 나오고 손실율도 커서 더 정확한 모듈을 만들기 위한 작업을 하겠습니다.


+ 일단 이번 글에서는 간단한 이해 및 원리만 이해하시면 되겠습니다.



+ Recent posts