TensorFlow는 대규모 수치 계산을 수행하는 강력한 라이브러리입니다. 탁월한 과제 중 하나는 심 신경 네트워크를 구현하고 교육하는 것입니다. 이 튜토리얼에서 우리는 TensorFlow 모델의 기본 빌딩 블록을 배우면서 깊은 컨볼 루션 MNIST 분류자를 생성합니다.
이 소개는 신경망과 MNIST 데이터 세트에 익숙하다고 가정합니다. 그들과 배경이 없다면, 초보자를위한 소개를 확인하십시오. 시작하기 전에 반드시 TensorFlow를 설치하십시오.
About this tutorial
이 튜토리얼의 첫 번째 부분에서는 Tensorflow 모델의 기본 구현 인 mnist_softmax.py코드에서 어떤 일이 일어나는지 설명합니다. 두 번째 부분에서는 정확성을 높이는 몇 가지 방법을 보여줍니다.
이 튜토리얼의 각 코드 스 니펫을 복사하여 Python 환경에 붙여 넣거나, 완전히 구현 된 깊은 네트를 mnist_deep.py에서 다운로드 할 수 있습니다.
이 튜토리얼에서 우리가 달성 할 수있는 것 :
-이미지의 모든 픽셀을 관찰하여 MNIST 숫자를 인식하는 모델 인 softmax 회귀 함수를 만듭니다.
-Tensorflow를 사용하여 수천 가지 사례를 "조사"하여 숫자를 인식하도록 모델을 교육합니다 (첫 번째 Tensorflow 세션을 실행하여 수행)
-테스트 데이터로 모델의 정확성을 확인하십시오.
-결과를 향상시키기 위해 다중 컨볼 루션 신경망을 구축, 훈련 및 테스트합니다.
Setup
모델을 만들기 전에 먼저 MNIST 데이터 세트를로드하고 TensorFlow 세션을 시작합니다.
MNIST 데이터로드
이 자습서의 코드를 복사하여 붙여 넣는 경우 다음 두 줄의 코드를 사용하여 데이터를 자동으로 다운로드하고 읽습니다.
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
여기서 mnist는 훈련, 검증 및 테스트 세트를 NumPy 배열로 저장하는 간단한 클래스입니다. 또한 아래에 사용할 데이터 minibatches를 반복하는 함수를 제공합니다.
TensorFlow InteractiveSession 시작
TensorFlow는 매우 효율적인 C ++ 백엔드를 사용하여 계산을 수행합니다. 이 백엔드에 대한 연결을 세션이라고합니다. TensorFlow 프로그램의 일반적인 사용법은 먼저 그래프를 만든 다음 세션에서 시작하는 것입니다.
여기서 우리는 편리한 InteractiveSession 클래스를 대신 사용합니다. TensorFlow는 코드 구조화 방법을보다 융통성있게 만듭니다. 그래프를 실행하는 계산 그래프를 작성하는 조작을 인터리브 할 수 있습니다. 이것은 IPython과 같은 대화식 환경에서 작업 할 때 특히 편리합니다. InteractiveSession을 사용하지 않는 경우, 세션을 시작하고 그래프를 시작하기 전에 전체 계산 그래프를 작성해야합니다.
import tensorflow as tf sess = tf.InteractiveSession()
계산 그래프
파이썬에서 효율적인 수치 계산을 수행하기 위해 일반적으로 다른 언어로 구현 된 매우 효율적인 코드를 사용하여 파이썬 외부의 행렬 곱셈과 같은 값 비싼 연산을 수행하는 NumPy와 같은 라이브러리를 사용합니다. 불행하게도, 모든 작업을 파이썬으로 다시 전환하면 많은 오버 헤드가 발생할 수 있습니다. 이 오버 헤드는 GPU에서 계산을 실행하거나 데이터를 전송하는 데 비용이 많이 드는 분산 된 방식으로 실행하려는 경우 특히 나쁩니다.
TensorFlow는 파이썬 밖에서도 힘든 작업을 수행하지만이 오버 헤드를 피하기 위해 한 걸음 더 나아갑니다. TensorFlow는 Python과 독립적으로 고가의 단일 연산을 실행하는 대신 Python 외부에서 실행되는 상호 작용하는 연산의 그래프를 설명합니다. 이 방법은 Theano 또는 Torch에서 사용되는 방법과 유사합니다.
따라서 파이썬 코드의 역할은이 외부 계산 그래프를 작성하고 계산 그래프의 어느 부분을 실행해야하는지 지시하는 것입니다. 자세한 내용은 TensorFlow 시작하기의 계산 그래프 섹션을 참조하십시오.
Softmax 회귀 모델 구축
이 섹션에서는 단일 선형 레이어가있는 softmax 회귀 모델을 작성합니다. 다음 섹션에서 우리는 이것을 다중 계층 콘볼 루션 네트워크가있는 softmax 회귀의 경우까지 확장 할 것입니다.
Placeholders
우리는 입력 이미지와 대상 출력 클래스에 대한 노드를 생성하여 계산 그래프를 작성하기 시작합니다.
+ 초급자 버전 및 기본 mnist 튜토리얼과 같은 방법으로 선언이 됩니다.
x = tf.placeholder(tf.float32, shape=[None,784]) y_ = tf.placeholder(tf.float32, shape=[None,10])
여기서 x와 y는 특정 값이 아닙니다. 오히려 각각은 자리 표시 자입니다. TensorFlow에 계산을 실행하도록 요청할 때 입력 할 값입니다.
입력 이미지 x는 2 차원 텐서 부동 소수점 수로 구성됩니다. 여기서 우리는 [없음, 784]의 모양을 할당합니다. 여기서 784는 단일 평평한 28x28 픽셀 MNIST 이미지의 차원이며, 없음은 배치 크기에 해당하는 첫 번째 차원이 모든 크기 일 수 있음을 나타냅니다. 목표 출력 클래스 y_는 또한 2d 텐서로 구성되며, 각 행은 해당 MNIST 이미지가 속하는 디지트 클래스 (0에서 9까지)를 나타내는 1 핫 10 차원 벡터입니다.
자리 표시 자에 대한 shape 인수는 선택 사항이지만 TensorFlow가 일치하지 않는 텐서 모양에서 발생하는 버그를 자동으로 잡을 수 있습니다.
Variables
이제 우리 모델에 대한 가중치 W와 편향치 b를 정의합니다. 우리는 이들을 추가 입력과 같이 취급한다고 상상할 수도 있지만 TensorFlow는이를 처리하는 더 좋은 방법을 가지고 있습니다 : 가변. 변수는 TensorFlow의 계산 그래프에있는 값입니다. 그것은 계산에 의해 사용되거나 심지어 수정 될 수 있습니다. 기계 학습 응용 프로그램에서 일반적으로 모델 매개 변수는 변수입니다.
W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10]))
tf.Variable에 대한 호출에서 각 매개 변수의 초기 값을 전달합니다. 이 경우 W와 b를 0으로 채워진 텐서로 초기화합니다. W는 784x10 행렬 (784 개의 입력 피처와 10 개의 출력이 있기 때문에)이고 b는 10 개의 클래스가 있으므로 10 차원 벡터입니다.
변수는 세션 내에서 사용되기 전에 해당 세션을 사용하여 초기화되어야합니다. 이 단계는 이미 지정된 초기 값 (이 경우에는 0으로 가득 찬 텐서)을 취하여 각 변수에 할당합니다. 이 작업은 모든 변수에 대해 동시에 수행 할 수 있습니다.
sess.run(tf.global_variables_initializer())
Predicted Class and Loss Function
이제 회귀 모델을 구현할 수 있습니다. 한 줄만 필요합니다! 벡터화 된 입력 이미지 x에 가중치 행렬 W를 곱하고 바이어스 b를 더합니다.
y = tf.matmul(x,W)+ b
손실 기능을 쉽게 지정할 수 있습니다. 손실은 단일 예에서 모델의 예측이 얼마나 나쁜지를 나타냅니다. 우리는 모든 예제를 통해 교육하면서이를 최소화하려고 노력합니다. 여기서 우리의 손실 함수는 목표와 모델의 예측에 적용되는 softmax 활성화 함수 간의 교차 엔트로피입니다. 초보자 가이드 에서처럼 안정된 공식을 사용합니다.
tf.nn.softmax_cross_entropy_with_logits는 모델의 비표준 모델 예측에 softmax를 내부적으로 적용하고 모든 클래스에서 합계를 계산하며, tf.reduce_mean은 이러한 합계에 대한 평균을 취합니다.
Train the Model
이제 모델 및 교육 손실 기능을 정의 했으므로 TensorFlow를 사용하여 교육하는 것이 간단합니다. TensorFlow는 전체 계산 그래프를 알고 있으므로 자동 차별화를 사용하여 각 변수에 대한 손실 그라디언트를 찾을 수 있습니다. TensorFlow에는 다양한 내장 최적화 알고리즘이 있습니다. 이 예에서는 교차 엔트로피를 내리기 위해 steepest gradient descent를 단계 길이 0.5로 사용합니다.
TensorFlow가 실제로 한 줄에서 계산 한 것은 새로운 연산을 계산 그래프에 추가하는 것이 었습니다. 이러한 작업에는 그라디언트를 계산하고, 매개 변수 업데이트 단계를 계산하고, 매개 변수에 업데이트 단계를 적용하는 작업이 포함되었습니다.
반환 된 작업 train_step을 실행하면 그라데이션 강하 업데이트가 매개 변수에 적용됩니다. 따라서 train_step을 반복적으로 실행하여 모델 교육을 수행 할 수 있습니다.
for _ in range(1000): batch = mnist.train.next_batch(100) train_step.run(feed_dict={x: batch[0], y_: batch[1]})
각 교육 반복마다 100 개의 교육 사례를로드합니다. 그런 다음 feed_dict를 사용하여 place_holder x 및 y_를 학습 예제로 대체하여 train_step 연산을 실행합니다. feed_dict를 사용하여 계산 그래프에서 임의의 텐서를 대체 할 수 있습니다. 단지 자리 표시 자에만 국한되지 않습니다.
Evaluate the Model (모델 평가)
우리 모델은 얼마나 잘 했습니까?
먼저 정확한 라벨 위치를 예측할 것입니다. tf.argmax는 어떤 축을 따라 텐서에서 가장 높은 엔트리의 인덱스를 제공하는 매우 유용한 함수입니다. 예를 들어, tf.argmax (y, 1)는 우리 모델이 각 입력에 대해 가장 가능성이 있다고 생각하는 레이블이고 tf.argmax (y_, 1)는 실제 레이블입니다. tf.equal을 사용하여 예측이 진실과 일치하는지 확인할 수 있습니다.
MNIST에서 92 % 정확도를 얻는 것은 좋지 않습니다. 그것은 거의 당황스럽게도 나빴습니다. 이 섹션에서는 아주 단순한 모델에서 중간 정도의 복잡한 것, 즉 작은 콘볼 루션 신경 네트워크로 점프 할 것입니다. 이것은 우리에게 99.2 %의 정확성을 줄 것입니다. 예술 수준은 아니지만 존경 할 만합니다.
무게 초기화
이 모델을 만들려면 많은 가중치와 편향을 만들어야합니다. 일반적으로 대칭 분리를 위해 소량의 잡음을 사용하여 가중치를 초기화하고 0 기울기를 방지해야합니다. 우리가 ReLU(ReLU) 뉴런을 사용하고 있기 때문에, "죽은 뉴런"을 피하기 위해 약간 긍정적 인 초기 바이어스로 초기화하는 것이 좋습니다. 모델을 빌드하는 동안이 작업을 반복적으로 수행하는 대신, 우리를 위해이 작업을 수행하는 두 가지 편리한 기능을 만들어 보겠습니다.
TensorFlow는 또한 컨볼 루션 및 풀링 작업에 많은 유연성을 제공합니다. 경계를 어떻게 처리할까요? 우리의 보폭은 무엇입니까? 이 예에서는 항상 바닐라 버전을 선택합니다. 우리의 컨볼 루션은 1의 보폭을 사용하며 출력이 입력과 동일한 크기가되도록 0으로 채워집니다. 우리의 풀링은 2x2 블록을 넘어서 평범한 오래된 최대 풀링입니다. 코드를보다 깨끗하게 유지하려면 이러한 연산을 함수로 추상화합시다.
이제 첫 번째 레이어를 구현할 수 있습니다. 컨볼 루션 (convolution)과 최대 풀링 (max pooling)으로 구성됩니다. 컨볼 루션은 각 5x5 패치에 대해 32 개의 기능을 계산합니다. 그것의 체중 텐서는 [5, 5, 1, 32]의 모양을 가질 것입니다. 처음 두 차원은 패치 크기이고, 다음은 입력 채널 수이고, 마지막은 출력 채널 수입니다. 각 출력 채널에 대한 구성 요소가있는 바이어스 벡터도 갖게됩니다.
초과 맞춤을 줄이기 위해 판독 레이어 앞에 드롭 아웃을 적용합니다. 우리는 드롭 아웃 중에 뉴런의 출력이 유지 될 확률에 대한 자리 표시자를 만듭니다. 이것은 우리가 훈련 중에 dropout을 켜고 시험하는 동안 turn off 할 수있게 해줍니다. TensorFlow의 tf.nn.dropout op는 마스킹 외에도 스케일링 뉴런 출력을 자동으로 처리하므로 드롭 아웃은 추가 스케일링 없이도 작동합니다 .
-가파른 그라데이션 하강 옵티 마이저를보다 정교한 ADAM 옵티 마이저로 대체 할 것입니다.
-feed_dict에 추가 매개 변수 keep_prob를 포함시켜 드롭 아웃 속도를 제어합니다.
-우리는 교육 과정에서 매 100 번째 반복에 로깅을 추가 할 것입니다.
또한 tf.InteractiveSession보다는 tf.Session을 사용할 것입니다. 이렇게하면 그래프를 만드는 과정 (모델 선택)과 그래프를 평가하는 과정 (모델 피팅)이 더 잘 분리됩니다. 일반적으로 더 깨끗한 코드를 만듭니다. tf.Session은 with 블록 내에서 만들어 지므로 블록이 종료되면 자동으로 삭제됩니다.
이 코드를 자유롭게 실행하십시오. 2 만 건의 교육 반복 작업을 수행하며 프로세서에 따라 다소 시간이 걸릴 수 있습니다 (최대 30 분 소요).
with tf.Session()as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i %100==0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob:1.0}) print('step %d, training accuracy %g'%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob:0.5})
우리는 TensorFlow를 사용하여 매우 정교한 심층 학습 모델을 빠르고 쉽게 작성, 교육 및 평가하는 방법을 배웠습니다.
1 :이 작은 컨볼 루션 네트워크의 경우 성능은 실제로 드롭 아웃 유무와 거의 동일합니다. 드롭 아웃은 종종 과잉을 줄이는 데 효과적이지만 매우 큰 신경 네트워크를 학습 할 때 가장 유용합니다.
+ Relu와 Dropout을 활용하여 심층 신경망을 연결하는 방법 및 히든레이어를 활용하여 서로 연결된 네트워크망을 구성하는 방법을 간단하게 나왔습니다. 추후의 CNN 을 참고하게 된다면 더 많은 레이어 구성 및 복잡하지만 단순하게 구성하는 방법의 튜토리얼이 나옵니다.
이 자습서에서 코드를 복사하고 붙여 넣는 경우, 여기서 데이터를 자동으로 다운로드하고 읽을 수 있는 코드 두줄로 시작하십시오.
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
MNIST 데이터는 세 부분으로 나뉩니다. 즉, 교육 데이터의 55,000개의 데이터 포인트( mnist.train), 테스트 데이터의 10,000포인트( mnist.test), 검증 데이터의 5,000포인트( mnist.validation)등이 있습니다.
이 세분류는 매우 중요합니다. 우리가 배워야 할 것은 우리가 배우지 못한 것을 확실히 할 수 있는 별개의 데이터를 가지고 있다는 것입니다.
앞서 언급한 바와 같이, 모든 MNIST 데이터 포인트에는 두개의 파트가 있습니다. 즉, 손으로 작성한 숫자와 해당 라벨의 이미지입니다.
우리는 이미지"x"와 라벨"y"를 부를 것입니다. 교육 세트 및 테스트 세트에는 이미지 및 해당 라벨이 모두 포함되어 있습니다. 예를 들어 교육용 이미지는 mnist.train.images이며, 교육용 레이블은 mnist.train.labels.입니다.
각 이미지는 28픽셀 x28픽셀입니다. NAT은 다음과 같은 다양한 수치로 해석할 수 있습니다.
우리는 이 배열을 28x28의 벡터의 벡터로 평평하게 만들 수 있다. 우리가 이미지들 사이에 일관성을 유지하는 한, 우리가 어떻게 배열할지는 중요하지 않습니다.
이러한 관점에서 볼 때, MNIST 이미지는 매우 풍부한 구조(경고:시각화 집약적 시각화)를 가진 벡터 기반 벡터 공간의 수많은 포인트일 뿐입니다.
평평한 데이터에서 이미지의 2D구조에 대한 정보가 삭제됩니다. 최고의 컴퓨터 비전 방법은 이 구조를 이용하는 거죠. 그리고 우리는 나중에 튜토리얼을 쓸 것입니다. 그러나 우리가 여기서 사용할 간단한 방법은 다음과 같습니다.
결과적으로 mnist.train.images는 55000( n-dimensional, 784, ])의 텐서이다. 첫번째 차원은 영상 목록에 있는 색인이며 두번째 차원은 각 영상의 각 픽셀에 대한 인덱스입니다.텐서( tensor)의 각 항목은 특정 영상의 특정 화소에 대해 0과 1사이의 화소 강도이다.
각 그림 MNIST의 각 이미지에는 해당 이미지에 그려진 숫자를 나타내는 0~9사이의 숫자가 있습니다.
본 자습서를 위해 저희는 라벨을 "one-hot 벡터"라고 부르고자 합니다. 벡터 기반 벡터는 대부분의 차원에서 0이며, 단일 차원의 1차원이다.이 경우 n번째 숫자는 n번째 치수의 1개의 벡터로 표현됩니다.예를 들어, 3은[0,0,0,0,0,0,0,0,0,0]입니다. 결과적으로 mnist.train.labels는[ 55000,10]kg의 부동 소수 점 배열이다.
우리는 이제 실제로 모델을 만들 준비가 됐어요!
Softmax Regressions
파이썬을 사용하여 효율적인 숫자 계산을 하기 위해서, 우리는 보통 Python곱셈기와 같은 비싼 작업을 하는 NumPy 같은 라이버리을 사용한다. 다른 언어로 구현된 매우 효율적인 코드이다.
불행히도, 모든 운영 체제로 전환하는 데는 여전히 많은 오버 헤드가 존재할 수 있습니다.
이 오버 헤드는 특히 데이터 전송에 높은 비용이 들 수 있는 분산된 방식이나 분산된 방식으로 계산하려는 경우에 특히 나쁩니다.
TensorFlow는 또한 Python을 없애기 위해 많은 노력을 하지만, 이러한 오버 헤드를 피하기 위해 한 걸음 더 나아 간다.
Python은 파이썬을 사용하여 독립적으로 운영하는 것을 대신하는 대신에 파이선을 사용하여 운영되는 상호 작용 작업의 그래프에 대해 설명합니다.(이와 같은 접근 방식은 몇개의 기계 학습 라이브러리에서 볼 수 있습니다.)
TensorFlow를 사용하려면 먼저 가져와야 합니다.
import tensorflow as tf
import tensorflow as tf
우리는 상징적 변수를 조작하여 이러한 상호 작용 운영을 설명한다. 다음을 생성합니다.
x = tf.placeholder(tf.float32,[None,784])
x는 특정한 가치가 아니다. 이것은 자리 표시자입니다. 우리가 계산대에서 계산할 때 우리가 입력할 가치가 있는 값입니다.
우리는 각각의 MNIST 이미지들을 784-dimensional 벡터로 바꿀 수 있는 숫자를 입력할 수 있기를 원합니다.
우리는 이것을 부동 소수 점 이하의 부동 소수 점 숫자의 2차원 텐서( 784)로 표현한다. (여기서는 치수가 어떤 길이라도 될 수 있음을 의미한다.)
우리는 또한 모델에 대한 체중(Weights)과 편견(Biases)이 필요합니다. 우리는 이것들을 추가 투입하는 것을 상상할 수 있지만, TensorFlow는 그것을 다루는 더 나은 방법을 가지고 있습니다. Variable
Variable는 상호 작용의 상호 작용에 대한 TensorFlow의 그래프에서 수정 가능한 수정 가능한 텐서이다.
그것은 계산에 의해 사용되고 심지어 수정될 수도 있다. 기계 학습 애플리케이션의 경우 일반적으로 모델 매개 변수는 변수 변수가 됩니다.
W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10]))
우리는 변수의 초기 값을 tf.Variable의 초기 값으로 줌으로써 이 변수를 생성합니다. 이 경우에는 W과 b을 tf.zeros 0으로 나눕니다.
우리는 W와 b를 배울 것이기 때문에, 그것들이 처음에는 그다지 중요하지 않다.
W는[ 784,10]의 형태를 가지고 있습니다. 왜냐하면 우리는 벡터의 벡터 벡터를 곱하기 위해 다른 등급의 벡터 벡터를 생성하기 위해 벡터 벡터를 곱하고 싶습니다.b는 출력에 추가할 수 있도록[10]의 모양을 가지고 있다.
이제 모델을 구현할 수 있습니다. 그것을 정의하는데 한줄만 걸려요!
y = tf.nn.softmax(tf.matmul(x, W)+ b)
첫째로, 우리는 x, W, W의 표현으로 x를 곱합니다.
이것은 우리가 곱셈 부호를 가지고 있는 우리의 방정식으로, 우리가 여러개의 입력을 가진 2D텐서를 다루는 작은 속임수로 우리의 방정식에 넣은 것에서 힌트를 얻었다.
그리고 나서 우리는 b를 추가하고, 마침내 tf.nn.softmax.를 적용한다.
바로 그거에요. 몇번의 짧은 설치 후에 모델을 정의할 수 있는 선이 하나밖에 없었습니다.
그것은 TensorFlow가 특별히 쉽게 회귀할 수 있도록 설계되었기 때문이 아니다.
그것은 기계 학습 모델에서부터 물리학 시뮬레이션에 이르기까지 많은 숫자의 수치 연산을 묘사하는 매우 유연한 방법입니다.
그리고 일단 정의된 대로, 우리의 모델은 컴퓨터의 CPU, GPUs, 심지어는 심지어 전화기로도 작동할 수 있습니다!
Training
모델을 훈련시키기 위해서, 우리는 모델이 좋은 것이 무엇인지를 의미하는 것을 정의해야 합니다.
실제로, 기계 학습에서는 전형적으로 모델이 나쁘다는 것을 의미합니다.
우리는 이것을 원가 혹은 손실이라 부르며, 그것은 우리의 모델이 원하는 결과로부터 얼마나 멀리 떨어져 있는지를 나타냅니다.
우리는 에러를 최소화하려고 합니다. 에러 마진이 적을수록 우리의 모델은 더 좋습니다.
모델의 분실을 결정하기 위한 매우 일반적이고 매우 훌륭한 기능은 "cross-entropy"라고 불립니다.
정보 이론은 정보 이론에서 정보 압축 코드에 대해 생각하는 것에서 기인하지만, 도박에서부터 기계 학습에 이르기까지 많은 분야에서 중요한 아이디어가 된다. 다음과 같이 정의됩니다.
여기서 y는 예측 가능한 확률 분포이며 y ′는 실제 분포(자릿수 라벨을 사용한 one-hot 벡터)이다.
대략적으로, cross-entropy는 우리의 예측이 진실을 설명하는 데 얼마나 비효율적인지를 측정하고 있다.
cross-entropy에 대한 자세한 내용은 본 자습서의 범위를 벗어나지만 이해할 만한 가치가 충분히 있습니다.
cross-entropy를 구현하려면 먼저 새 자리 표시자를 추가하여 올바른 답을 입력해야 합니다.
첫째, tf.log는 y의 각 요소의 대수를 계산한다. 다음으로 y-y의 원소를 곱하고 y^y(y)와 같은 원소를 곱한다.
그런 다음 tf.reduce_sum는 reduction_indices=[1 매개 변수로 인해 y의 두번째 치수에 해당하는 요소를 추가합니다.
마지막으로, tf.reduce_mean는 배치의 모든 예제에 대한 평균을 계산합니다.
소스 코드에서는 이 공식을 사용하지 않습니다. 숫자가 불안정하기 때문입니다. 그 대신에 unnormalized(x, W)+b(x, W)에 softmax_cross_entropy_with_logits를 tf.nn.softmax_cross_entropy_with_logits에 적용한다.
이는 보다 수치적으로 안정적인 기능을 통해 내부적으로 softmax 활성화를 계산합니다. 코드를 사용하는 경우 대신 tf.nn.softmax_cross_entropy_with_logits를 사용하는 것을 고려해 보십시오.
이제 우리가 원하는 것이 무엇인지 알 수 있으므로, 우리가 그것을 하기 위해 TensorFlow를 훈련시키는 것은 매우 쉬워요.
왜냐하면 TensorFlow는 당신의 계산의 전체 그래프를 알고 있기 때문입니다. 자동화 알고리즘을 사용하여 변수가 손실되는 손실에 어떻게 영향을 미치는지 효율적으로 결정할 수 있습니다.
이 경우에, 우리는 TensorFlow에게 0.5의 학습 속도로 구배 하강 알고리즘을 사용하여 cross_entropy를 최소화할 것을 요청한다.경사 하강은 간단한 절차입니다. 여기서 TensorFlow는 단순히 각 변수를 비용을 감소시키는 방향으로 조금씩 돌립니다. 하지만 TensorFlow는 여러가지 다른 최적화 알고리즘을 제공합니다. 만약 한개만 한다면 하나의 선을 조정하는 것만큼 간단합니다.
TensorFlow가 실제로 여기서 수행하는 것은 backpropagation와 경사도 하강을 구현하는 그래프에 새로운 연산을 추가하는 것입니다. 그런 다음, 단일 작업을 수행합니다. 단, 작동 시 기울기 하강 훈련을 수행하여 변수를 약간 수정하고 손실을 줄입니다.
이제 InteractiveSession에서 모델을 시작할 수 있습니다.
sess = tf.InteractiveSession()
먼저 생성한 변수를 초기화하기 위한 작업을 생성해야 합니다.
tf.global_variables_initializer().run()
훈련을 시작합시다--훈련 스텝은 1000번입니다!
for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
각 단계마다 100개의 무작위 데이터 포인트가 배치되어 있습니다. 교육 세트에서 백개의 랜덤 데이터 포인트를 얻을 수 있습니다. 우리는 배치 데이터에서 자리 표시자를 대체하기 위해 train_step 데이터를 실행한다.
무작위 데이터의 소량 배치를 확률적 훈련이라 부르며 이 경우 확률적 경사 하강 하강이다. 이상적으로는, 우리는 모든 훈련 과정을 위해 모든 데이터를 사용하고 싶습니다. 왜냐하면 우리는 우리가 해야 할 일을 더 잘 이해할 수 있기 때문입니다. 하지만 그것은 비쌉니다. 따라서, 우리는 매번마다 다른 하위 집합을 사용합니다. 이것을 하는 것은 싸고 이로운 점도 많다.
Evaluating Our Model
우리의 모델은 얼마나 잘 되나요?
글쎄요, 우선 정확한 라벨을 어디에 뒀는지 알아냅시다. tf.argmax는 어떤 축을 따라 가장 높은 진입률의 지수를 나타내는 매우 유용한 기능이다. 예를 들어, tf.argmax(y, 1)은 각 입력에 대해 가장 가능성이 높은 라벨이며, tf.argmax(y_, 1)은 정확한 라벨로 표시된다. 우리는 우리의 예측이 진실과 일치하는지를 확인하기 위해 tf.equal를 사용할 수 있다.